

AFRL-IF-RS-TR-2003-62

Final Technical Report
March 2003

COMPUTATIONAL VIDEO FOR
COLLABORATIVE APPLICATIONS

Massachusetts Institute of Technology

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-62 has been reviewed and is approved for publication.

APPROVED:
 EDWARD DEPALMA

Project Engineer

 FOR THE DIRECTOR:
JAMES W. CUSACK, Chief
Information Systems Division

 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2003

3. REPORT TYPE AND DATES COVERED
Final Apr 97 – Aug 02

4. TITLE AND SUBTITLE
COMPUTATIONAL VIDEO FOR COLLABORATIVE APPLICATIONS

6. AUTHOR(S)
Leonard McMillan and David Gifford

5. FUNDING NUMBERS
C - F30602-97-1-0283
PE - 62301E
PR - F305
TA - 01
WU - 00

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
Laboratory for Computer Science
77 Massachusetts Avenue, E19-719
Cambridge Massachusetts 02139

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFSF
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-62

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Edward DePalma/IFSF/(315) 330-3069/ Edward.DePalma@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Computational Video for Collaborative Applications effort was devoted to the research of video
compression/decompression, virtual telepresence, and real-time processing of streaming data-types. Compression
techniques were focused on overcoming the problem of delivering streaming content over unreliable packet-switching
networks. Virtual telepresence work was in the development of video streaming with the end user having more control
over how the video is presented. Real-time processing of streaming data types involves the fusing together of multiple
video streams. A derivative of this work is the development of a new method for constructing virtual camera views from
multiple live video streams by using dynamically reparameterized light fields (DRLFs). This technique has the
advantage of providing visualizations of a remote scene’s background and foreground objects. Extensive involvement
at the Siggraph computer graphics conventions over the past several years has furthered the reach and applications of
this important research.

15. NUMBER OF PAGES
90

14. SUBJECT TERMS
Video Compression, Video Decompression, Video Streaming, Virtual Telepresence,
Dynamically Reparameterized Light Fields, Data Fusing 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Objective:.. 1
Approach:.. 1
Program Accomplishments:.. 5

1. Pure Java-based Streaming MPEG Player.. 5
2. NAIVE - Network Aware Internet Video Encoding,.. 6
3. Image-Based Visual Hulls. ... 6
4. Dynamically Reparameterized Light Fields, .. 6
5. Polyhedral Visual Hulls for Real-Time Rendering... 7
6. Unstructured Lumigraph Rendering. .. 7
7. Mesh Based Content Routing using XML.. 7
8. Efficient View-Dependent Sampling of Visual Hulls. ... 8

Project Milestones and Accomplishments: ... 8
November 1999, DARPA ITO PI Meeting, HI .. 8
September 2000, DARPA ITO PI Meeting, San Diego, CA.. 8

Conclusions:.. 9
APPENDIX A Pure Java-based Streaming MPEG Playe...10

APPENDIX B NAÏVE – Network Aware Internet Video Encoding19

APPENDIX C Image-Based Visual Hulls..29
APPENDIX D Dynamically Reparameterized Light Fields...35

APPENDIX E Polyhedral Visual Hulls for Real-Time Rendering45

APPENDIX F Unstructured Lumigraph Rendering ..57
APPENDIX G Mesh-Based Content Routing using XML..65

APPENDIX H Efficient View-Dependent Sampling of Visual Hulls.....................79

goodelle

 ii

Table of Figures

Figure 1. Our Network Aware Internet Video Encoding (NAÏVE) system. Enables the
transmission of a single video stream to multiple recipients, without throttling or
adapting at the source. It is able to reconstruct video frames in the presence of
packet loss or conjestion. .. 1

Figure 2. Our remote presentation system combined multiple asynchronous video
streams of varying resolutions into a single coherent and navigable media. The end
user is provide with pan-tilt and zoom control. Regions of interest are presented at
higher resolutions.. 2

Figure 3. An example output from our image-based visual hull system. Foreground
objects from four source cameras are shown above. The lower left image is
synthesized from the textures and silhouettes of the source image. The false colored
image on the right highlights the contributions of the source images to the final
rendered result. Our image-based visual hull system creates models at greater than
10 frames per second. These models can be rendered at speed exceeding 30 frames
per second. .. 3

Figure 4. Shown above is a photograph of the 64-camera dynamically re-parameterized
light field array. Virtual camera views can be synthesized in real-time using our light
field rendering methods. Our rendering techniques optimize bandwidth utilization
and provide very high performance. ... 4

Figure 5. Our content routing system processes real-time data streams, in this case radar
data, by adding XML tags. These XML tags are used by application-level routers to
process, redirect, filter, and re-label information in the stream for subsequent
distribution. ... 5

 1

Objective:
In this program, we have developed a wide range of new technologies for filtering,
processing, and interpreting streaming media types. We refer to these various technology
components as Computational Video systems. The key applications where we have
applied our computational video systems are in supporting collaboration and situational
awareness. The research outcomes of this program include significant new approaches to
video compression and decompression, remote telepresence, multiple-sensor fusion, and
the real-time processing and filtering of streaming data types.

Approach:
In the Computation Video project we have conducted research in three areas related to
the use of streaming real-time media in collaborative applications. These research areas
include:

• Video compression and decompression
• Virtual telepresence for collaboration
• Real-time processing of streaming data-types

Our work in video compression and decompression has focused on the problem of
delivering streaming content over unreliable packet-switched networks and the support of
heterogeneous environments. This is in contrast to previous video-compression standards
such as MPEG and H261, where the error free and sequential transmission is assumed. In
this program, we developed a new video compression algorithm called NAÏVE, (Network
Aware Internet Video Encoding). NAÏVE is resilient to drop outs (packet loss), out of
order transmission, and it allows for a wide-range in performance for client platforms.

Figure 1. Our Network Aware Internet Video Encoding (NAÏVE) system. Enables the
transmission of a single video stream to multiple recipients, without throttling or adapting at the

source. It is able to reconstruct video frames in the presence of packet loss or conjestion.

 2

In order to support video in heterogeneous environments we have also developed
software-only MPEG decoder written entirely in Java. This package allows for
distribution of streaming video content across any Java-enabled platform without
requiring any specialized plug-ins or classes. The code can be embedded as part of a web
page and then it can be delivered on demand to the client. The entire decoder, including a
customizable user interface, is less than 85 Kbytes.

In support of collaboration, we have developed several technologies related to virtual
telepresence. By virtual telepresence we refer to the use of client-side computation to
extend video conferencing. Our goal was to provide the end-user, or consumer, of a video
stream with more control over how that video stream is presented. We sought to provide
the end-user with control over a remote virtual camera. Moreover, we can provide this
level of control simultaneously to multiple viewers, who are observing common video
streams. We completed three research projects in this area.

Figure 2. Our remote presentation system combined multiple asynchronous video streams of
varying resolutions into a single coherent and navigable media. The end user is provide with pan-

tilt and zoom control. Regions of interest are presented at higher resolutions.

We have developed a remote presentation viewing systems, where multiple users are
simultaneously allowed to pan, tilt, and change the field-of-view of a virtual camera
located at the remote source. This is accomplished by broadcasting a single panoramic
video stream. Each viewer customizes his or her viewing experience by controlling a
virtual camera. The video image from this virtual camera is synthesized locally at the
client. We extended this system to include multiple video streams to allow users to move
about even more freely within the remote scene. Auxiliary streams can used to provide
increased resolution in areas of interest (i.e. higher resolution of the speaker, or to
provide more resolution so that a Powerpoint presentation would be readable). As part of
this work we developed techniques for extracting foreground and background objects in
real time. These we used to underlay high-resolution display information within a lower
resolution panorama.

 3

One unexpected result form our remote presentation viewing system work was a new
technology for interpreting and fusing together multiple video streams. We have
developed an innovative technology for acquiring three-dimensional models from
simultaneous video streams of the same scene, called the image-based visual hull. These
three-dimensional models can be synthesized in real-time at rates exceeding 30 frames
per second. These models can be used to support many applications. They can be used to
provide realistic animated avatars and other content for simulation applications, as well
as in intelligence collection for the recognition and classification of targets. Our system
can also be used in surveillance applications to provide novel viewpoints other than those
seen from any particular camera. Finally, these models represent a compact form of
three-dimensional compression, which can be applied to future applications of 3-D
teleconferencing.

Another derivative of our remote presentation system was a new method for constructing
virtual camera views directly from multiple live video streams, called dynamically re-
parameterized light fields. In contrast to our visual hull system, dynamically re-
parameterized light fields (DRLFs) have the following advantage, they can provide
visualizations of the remote scene’s background as well as the foreground objects. In
DRLFs the virtual camera’s view is interpolated directly from the video stream without
constructing an intermediate geometric model. This technique requires a large number of
cameras, but it is very efficient computationally. We have demonstrated light field
viewers operating at 30 frames per second from 64 live video streams. This technique can
also be used to synthesize stereo views.

Figure 3. An example output from our image-based visual hull system. Foreground objects from
four source cameras are shown above. The lower left image is synthesized from the textures and
silhouettes of the source image. The false colored image on the right highlights the contributions

of the source images to the final rendered result. Our image-based visual hull system creates
models at greater than 10 frames per second. These models can be rendered at speed exceeding

30 frames per second.

 4

Figure 4. Shown above is a photograph of the 64-camera dynamically re-parameterized light
field array. Virtual camera views can be synthesized in real-time using our light field rendering

methods. Our rendering techniques optimize bandwidth utilization and provide very high
performance.

We have also generalized our computational video approach to include streaming data
types other than video. In particular, we have developed a system for reliably
multicasting time-critical data to heterogeneous clients using overlay networks. To
facilitate intelligent content pruning, we have built systems to dynamically tag real-time
data streams with XML descriptions. These descriptions are forwarded to the network
where they can be interpreted, filtered, and even relabeled by subsequent application-
level XML routers. XML routers perform content-based routing of individual XML
packets to subsequent routers or clients based upon filters that describe the information
needs of down-stream nodes. We have applied this technology to live radar feeds.

 5

Figure 5. Our content routing system processes real-time data streams, in this case radar data, by
adding XML tags. These XML tags are used by application-level routers to process, redirect,

filter, and re-label information in the stream for subsequent distribution.

Program Accomplishments:

The following publications, which are provided along with their abstracts, are direct
results of this program.

1. Pure Java-based Streaming MPEG Player. Osama Tolba, Hector
Briceño, and Leonard McMillan, SPIE Proceedings Vol. 3528: Multimedia Systems and
Applications, SPIE's Symposium, Boston, November 1998.

We present a pure Java-based streaming MPEG-1 video player. By implementing the
player entirely in Java, we guarantee its functionality across platforms within any Java-
enabled web browsers, without the need for native libraries. This allows greater use of
MPEG video sequences, because the users will no longer need to pre-install any software
to display video, beyond Java compatibility. This player features a novel forward-
mapping IDCT algorithm that allows it to play locally stored, CIF-sized (352 x 288)
video sequences at 11 frames per second, when run on a personal computer with Java
“Just-in-Time” compiler. The IDCT algorithm can run with greater speed when the
sequence is viewed at reduced size; e.g., performing approximately ¼ the amount of
computation when the user resizes the sequence to ½ its original width and height. We
are able to play video streams stored anywhere on the Internet with acceptable
performance using a proxy server, eliminating the need for large-capacity auxiliary
storage. Thus, the player is well suited to small devices, such as digital TV set-top

 6

decoders, requiring little more memory than is required for three video frames. Because
of our modular design, it is possible to assemble multiple video streams from remote
sources and present them simultaneously to the viewers (i.e. picture-in-a-picture style),
subject to network and local performance limitations. The same modular system can
further provide viewers with their own customized view of each session; e.g., moving and
resizing the video display window dynamically, and selecting their preferred set of video
controls.

2. NAIVE - Network Aware Internet Video Encoding, Hector Briceño,
Steven Gortler, and Leonard McMillan, Proceedings of Seventh ACM International
Multimedia Conference, (ACM MULTIMEDIA'99, Orlando, FL, Oct. 30 - Nov. 5, 1999),
pp. 251-260.

The distribution of digital video content over computer networks has become
commonplace. Unfortunately, most digital video encoding standards do not degrade
gracefully in the face of packet losses, which often occur in a bursty fashion. We propose
a new video encoding system that scales well with respect to the network’s performance
and degrades gracefully under packet loss. Our encoder sends packets that consist of a
small random subset of pixels distributed throughout a video frame. The receiver places
samples in their proper location (through a previously agreed ordering), and applies a
reconstruction algorithm on the received samples to produce an image. Each of the
packets is independent, and does not depend on the successful transmission of any other
packets. Additionally, each packet contains information that is distributed over the entire
image. We also apply spatial and temporal optimization to achieve better compression.

3. Image-Based Visual Hulls. Wojciech Matusik, Chris Buehler, Ramesh
Raskar, Steven Gortler, and Leonard McMillan, Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, July 2000, pp. 369-374.

In this paper, we describe an efficient image-based approach to computing and shading
visual hulls from silhouette image data. Our algorithm takes advantage of epipolar
geometry and incremental computation to achieve a constant rendering cost per rendered
pixel. It does not suffer from the computation complexity, limited resolution, or
quantization artifacts of previous volumetric approaches. We demonstrate the use of this
algorithm in a real-time virtualized reality application running off a small number of
video streams.

4. Dynamically Reparameterized Light Fields, Aaron Isaksen, Leonard
McMillan, and Steven Gortler, Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, July 2000, pp. 297-306.

This research further develops the light field and lumigraph image-based rendering
methods and extends their utility. We present alternate parameterizations that permit 1)
interactive rendering of moderately sampled light fields of scenes with significant,
unknown depth variation and 2) low-cost, passive autostereoscopic viewing. Using a
dynamic reparameterization, these techniques can be used to interactively render

 7

photographic effects such as variable focus and depth-of-field within a light field. The
dynamic parameterization is independent of scene geometry and does not require actual
or approximate geometry of the scene. We explore the frequency domain and ray-space
aspects of dynamic reparameterization, and present an interactive rendering technique
that takes advantage of today’s commodity rendering hardware.

5. Polyhedral Visual Hulls for Real-Time Rendering. Wojciech
Matusik, Chris Buehler, and Leonard McMillan, Proceedings of Twelfth Eurographics
Workshop on Rendering, London, England, June 2001, pp. 116-126.

We present new algorithms for creating and rendering visual hulls in real-time. Unlike
voxel or sampled approaches, we compute an exact polyhedral representation for the
visual hull directly from the silhouettes. This representation has a number of advantages:
1) it is a view-independent representation, 2) it is well-suited to rendering with graphics
hardware, and 3) it can be computed very quickly. We render these visual hulls with a
view-dependent texturing strategy, which takes into account visibility information that is
computed during the creation of the visual hull. We demonstrate these algorithms in a
system that asynchronously renders dynamically created visual hulls in real-time. Our
system outperforms similar systems of comparable computational power.

6. Unstructured Lumigraph Rendering. Chris Buehler, Michael Bosse,
Leonard McMillan, Steven Gortler, and Michael Cohen, Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, July
2001, pp. 425-432.

We describe an image based rendering approach that generalizes many current image
based rendering algorithms, including light field rendering and view-dependent texture
mapping. In particular, it allows for lumigraph-style rendering from a set of input
cameras in arbitrary configurations (i.e., not restricted to a plane or to any specific
manifold). In the case of regular and planar input camera positions, our algorithm reduces
to a typical lumigraph approach. When presented with fewer cameras and good
approximate geometry, our algorithm behaves like view-dependent texture mapping. The
algorithm achieves this flexibility because it is designed to meet a set of specific goals
that we describe. We demonstrate this flexibility with a variety of examples.

7. Mesh Based Content Routing using XML. Alex C. Snoeren, Kenneth
Conley, and David K. Gifford, ACM Symposium on Operating System Principles,
October 2001, pp. 160-173.

We have developed a new approach for reliably multicasting time-critical data to
heterogeneous clients over mesh-based overlay networks. To facilitate intelligent content
pruning, data streams are comprised of a sequence of XML packets and forwarded by
application-level XML routers. XML routers perform content-based routing of
individual XML packets to other routers or clients based upon queries that describe the
information needs of down-stream nodes.

 8

Our routers use a novel Diversity Control Protocol (DCP) for router-to-router and router-
to-client communication. DCP reassembles a received stream of packets from one or
more senders, using the first copy of a packet to arrive from any sender. When each node
is connected to n parents the resulting network is resilient to n-1 router or independent
link failures without repair. Associated mesh algorithms permit the system to recover to
n-1 resilience after node and/or link failure. We have deployed a distributed network of
XML routers that streams real-time air traffic control data. Experimental results show
multiple senders improve reliability and latency when compared to tree-based networks.

8. Efficient View-Dependent Sampling of Visual Hulls. Wojciech
Matusik, Chris Buehler, and Leonard McMillan, MIT Technical Memo MIT-LCS-TM-
623

In this paper we present an efficient algorithm for sampling visual hulls. Our algorithm
computes exact points and normals on the surface of visual hull instead of a more
traditional volumetric representation. The main feature that distinguishes our algorithm
from previous ones is that it allows for sampling along arbitrary viewing rays with no
loss of efficiency. Using this property, we adaptively sample visual hulls to minimize the
number of samples needed to attain a given fidelity. In our experiments, the number of
samples can typically be reduced by an order of magnitude, resulting in a corresponding
performance increase over previous algorithms.

Project Milestones and Accomplishments:
In addition to the publications and technical reports mentioned above, the various results
of this research program have been presented to the DARPA community at the following
venues:

November 1999, DARPA ITO PI Meeting, HI – We presented live demos of
our remote presentation, and Java-based MPEG decoder systems, as part of the work-in-
progress demonstration system. Participants at the demo site were able to dynamically
change the view of a remote presentation system originating from our graphics lab in
Cambridge MA. Participants were able to freely look around the lab.

September 2000, DARPA ITO PI Meeting, San Diego, CA – We
presented demonstrations of our image-based visual hull and Naïve video compression
systems. We used a four-camera system to synthesize real time virtual models of demo
attendees. In addition to demonstrating progress on our research efforts this effort
demonstrated the robustness and portability of our system.

 9

Conclusions:
The computational video project has generated a wide range of fundamental research
results, which have had a large impact on the graphics and vision research communities.
As a measurement of this impact one needs only look at the on-line citation database
CiteSeer (http://citeseer.nj.nec.com/cs) to see the number of reference to work funded
through this program. For instance, the image-based visual-hull work has been referenced
23 subsequent research papers, and the dynamically re-parameterized light-field work has
been cited by 8 other publications.

Pure Java-based Streaming MPEG Player

Osama Tolba, Hector Briceño, and Leonard McMillan*

Laboratory for Computer Science, MIT

ABSTRACT

We present a pure Java-based streaming MPEG-1 video player. By implementing the player entirely in Java, we guarantee
its functionality across platforms within any Java-enabled web browsers, without the need for native libraries. This allows
greater use of MPEG video sequences, because the users will no longer need to pre-install any software to display video,
beyond Java compatibility. This player features a novel forward-mapping IDCT algorithm that allows it to play locally
stored, CIF-sized (352 x 288) video sequences at 11 frames per second, when run on a personal computer with Java “Just-in-
Time” compiler. The IDCT algorithm can run with greater speed when the sequence is viewed at reduced size; e.g.,
performing approximately ¼ the amount of computation when the user resizes the sequence to ½ its original width and
height. We are able to play video streams stored anywhere on the Internet with acceptable performance using a proxy server,
eliminating the need for large-capacity auxiliary storage. Thus, the player is well suited to small devices, such as digital TV
set-top decoders, requiring little more memory than is required for three video frames. Because of our modular design, it is
possible to assemble multiple video streams from remote sources and present them simultaneously to the viewers (i.e.
picture-in-a-picture style), subject to network and local performance limitations. The same modular system can further
provide viewers with their own customized view of each session; e.g., moving and resizing the video display window
dynamically, and selecting their preferred set of video controls.

Keywords: Java, MPEG, forward-mapping IDCT, streaming video.

1. INTRODUCTION

Due to the recent explosion of digital video and its applications in the Internet and broadcast media, there is a growing need
for Internet-based video players. Some Internet streaming video players already exist, such as RealPlayer by RealNetworks,
Inc., but they are platform dependent and require downloading and updating the player code regularly. We believe that
players implemented using the new Java Media Framework (JMF) have some limitations too. While JMF implementations
can play MPEG-1 video they still rely on native libraries that must be downloaded and installed on the browser’s machine.7

JMF also imposes other limitations; for example, low-level access to picture data is prohibited. We set out to explore whether
a player could be implemented entirely in Java. Here are some of the advantages of Java that led us to choosing it for our
player, and shortcomings of Java that we have encountered.

Advantages of a Java-based player:

1. Programs written entirely in Java run across platforms within any Java-enabled Web browser or other Java Virtual
Machines (JVM’ s), without the need for native libraries. This allows greater use of MPEG video sequences, because the
users will no longer need to pre-install any software plug-ins to display video. All that is required is Java compatibility,
preferably with Just-in-Time (JIT) compiling.

2. Java’s small footprint and availability for small devices.
3. Java programs are compact. The size of the Jar file for our minimal MPEG player is 40 kilobytes.
4. Extensive networking capabilities are built into the language, making it easy to write programs that use Internet

communication.

Shortcomings of Java:

* Address: 545 Technology Square, Cambridge, MA 02139. E-mail: {tolba, hbriceno, mcmillan}@graphics.lcs.mit.edu

10

goodelle
Appendix A:

1. Programs written in Java—an interpreted language—run slower than ones written in compiled languages, such as C,
even with the aid of JIT compilers which translate Java’s byte code into native code.

2. Another performance shortcoming of Java lies within its windowing toolkit, the AWT. In our results we show that the
video’s update rate is greatly influenced by the rate at which the screen component can load and draw the new image.

3. While Java’s and Internet browsers’ security restrictions are useful for many applications, they create extra work for
programmers wishing to establish read-only network connections. Such connections are commonplace in a Web browser
but a Java applet is not allowed to perform them unless the browser’s security settings are lowered. We have found the
task of lowering the security restrictions cumbersome and decided to augment our applications with a server-side proxy
server residing on the same host as the applet that makes the necessary network connection and forwards the data to the
applet.

4. Java’s application programming interface (API) is rapidly evolving. While providing great enhancements, such pace
burdens the programmer with compatibility issues. For example, our initial implementation employed Java’s older
version 1.0 but was extremely slow to update an animated image. Therefore, the final implementation, which uses
version 1.1, is not guaranteed to run on every Java machine.

5. Because Java is new and evolving, different Java machines have widely varied performances. This is most evident in the
ten-fold increase in performance when using the JIT compilers.

Many video sources in the Internet can be extremely long and in some cases arbitrarily long as in the case of live video. In
the past, players downloaded the entire video sequence before playing it. This initial waiting period limited the broad
utilization of video. Recently video players have adopted the strategy of decoding video sequences as they are received; a
technique referred to as streaming. Streaming has the side-benefit of constant storage requirements at the receiver. Our video
player is capable of playing streaming video from either local files or the Internet. Currently we are using the HTTP protocol3

that is compatible with all web-servers to fetch video from the Internet, but other protocols can be incorporated into our
modular framework.

In section 2 we give a description of the system architecture we adopted for the player. Specific details about the inverse
discrete cosine transform (IDCT) algorithm employed in this player are given in section 3, while Sections 4 and 5 include the
results and discussion. This player was implemented as part of the ongoing Computational Video project at MIT.8

2. SYSTEM ARCHITECTURE

We have adopted a modular design of the video player based on source-player (producer-consumer) architecture. In this
architecture, a single Java canvas or panel is overloaded to act as the player associated with a source object that reads bits
from the video stream and decodes the individual frames. Any number of these players can be embedded in a Java applet or
application. The applet may also host a panel of video controls resembling a video cassette player that communicates user
interaction to all the players in the applet. The player panel has a similar set of controls in the form of a popup menu with
additional controls that allow the viewer to change the size and appearance of the video component. Such modular design
allows the users to assemble their own customized sessions including any number and shape of video windows and controls.
We envision a scenario where a variety of video controls with different styles and functionality is available, perhaps via the
Internet. The session can be configured dynamically as well, for example to move or reduce the footprint of a player to
expose the video players behind it.

V
id

eo
 C

on
te

nt
(M

PE
G

)

Control PanelPlayer Applet

V
id

eo
 S

ou
rc

e
(M

PE
G

 d
ec

od
er

) Video Panel

Video Component

N
et

w
or

k
C

on
ne

ct
io

n
(H

T
T

P,
 p

ro
xy

)

Popup
Controls

Figure 1. Diagram showing the source-player architecture of the video player, with visual parts shaded.

11

Under this architecture the video producer can implement any video CODEC, in this case is an MPEG decoder. The decoder
reads its bits from an input stream residing on the applet’s HTTP server, or any other server via a proxy server as discussed
later. Instead of downloading the entire file beforehand, the producer begins decoding the video stream immediately, thereby
eliminating the need for large amounts of memory. However, because of the structure of the MPEG stream, which includes
forward and backward prediction video frames, the decoder must store two reference frames in addition to the one currently
being decoded. Hence, the overall memory requirements of this decoder consist of three YUV frames, double-buffered
display, room for lookup tables, and limited input buffer.

The need for a proxy server arises from Java’s and Web browsers’ security limitations. Most browsers, in their default
settings, do not permit Java applets to make network connections, such as the ones needed to play video sequences from other
Internet locations. A proxy is a server that acts as an intermediary, forwarding bits from a source server to a destination client
that cannot make the direct connection itself. Naturally, the proxy server has a limited buffer in order to reduce network
communication and enhance performance. We implemented this server using the C language for efficiency and because it
does not affect the player’s portability.

3. FORWARD-MAPPING IDCT

MPEG decoding involves many steps, as shown in Figure 2. A straightforward implementation of these procedures in Java
would prove to be too slow for practical use. In order to optimize this process it is necessary to identify its bottlenecks. We
have found the IDCT computation to be a major one.† In this section we describe a novel IDCT algorithm we have developed
based on McMillan and Westover’s forward-mapping IDCT (FMIDCT) and the table lookup technique that combines the
inverse quantizer and the IDCT. The performance gains allow us to decode MPEG streams in Java software without native
libraries or hardware acceleration.

Input
Buffer

VLC
Decoder

Inverse
Quantizer

Inverse
DCT

Coded
Stream

Adder
Previous
Picture
Store

Forward MC

Interp. MC

Backward MC
Next
Picture
Store

Display
Buffer

Figure 2. MPEG decoder block-diagram, with shaded area showing where the FMIDCT optimizes the process.

3.1 Background

McMillan and Westover presented an algorithm for computing the IDCT that exploits the sparseness of the typical IDCT
input sequence.4 The procedure involves computing the individual contributions of each input vector element and
accumulating its contribution into the final result. This style of computation is commonly referred to as forward-mapping
evaluation. This technique for the IDCT can be easily derived from the definition of the type II two-dimensional NxN IDCT
given below:

vu

N

u

vu

N

v
yx I

N

vy

N

ux
ff

N
O ,

1

0

1

0
, 2

)12(
cos

2

)12(
cos

2

 +

 += ∑∑

−

=

−

=

ππ
, (1)

† If this were not true, there would be no significant speedup in decoding predicted (P or B) frames, as opposed to intra-coded (I) frames. In
our experiments, I-frames take twice as long to decode as other predicted frames on the average.

12

where
otherwise

i
f i

0

1
2
2 =

=

This equation can be expressed as a matrix product as follows:

ICO = , (2)
where O and I are column vectors resulting from the row enumeration of Ox,y and Iu,v, and C is a N2xN2 matrix.

The contribution of each element iu,v of the input vector I is the product of iu,v and a particular column within matrix C. This
column is the unit-valued basis vector Ku,v, unique to input iu,v. One can easily observe that zero-valued elements of the input
vector make no contribution to the output sequence. Furthermore, while each unit-valued basis vector Ku,v has N2 coefficients
there are at most N(N+2)/8 unique coefficients if the sign is ignored. For an 8x8 transform the number of unique coefficients
for each of the basis vectors is summarized in Table 1.

v \
u 0 1 2 3 4 5 6 7

0 1 4 2 4 1 4 2 4
1 4 10 8 10 4 10 8 10
2 2 8 3 8 2 8 3 8
3 4 10 8 10 4 10 8 10
4 1 4 2 4 1 4 2 4
5 4 10 8 10 4 10 8 10
6 2 8 3 8 2 8 3 8
7 4 10 8 10 4 10 8 10

Table 1. Number of unique coefficients for the basis vectors in an 8x8 transform.

The forward-mapping approach takes advantage of this repetition by performing the minimum number of multiplies,
corresponding to the number of unique coefficients within the basis functions, and then performing the appropriate add or
subtract into the output vector.

In practice the input sequence presented to the IDCT is generated by a dequantization step. This dequantization requires a
unique multiplication for each element in the input sequence, and potentially other non-linear operations. In the FMIDCT the
dequantization and the basis function scaling for each element of the input sequence are combined into a single table lookup.
For an 8x8 transform this requires an M entry table where each table entry is composed of K elements, where Table 1
determines K. The contents of a table entry reflect both the dequantization and subsequent scaling of the unique coefficients
of basis function. McMillan and Westover also described a technique for reducing the number of table elements and deferring
their generation. As a result, the direct computation of the two-dimensional IDCT can typically be accomplished with fewer
than 10 adds or subtracts and virtually no multiplies per output element, which compares favorably to any other fast IDCT
implementation.

3.2 Improvements to the FMIDCT

In the remainder of this section we describe new improvements to the FMIDCT, achieved by exploiting the symmetries of the
basis functions. These improvements reduce the required number of additions by a factor of four. It uses a smaller
accumulator array that can potentially fit in registers, which greatly enhances the performance. Also, we reduced the size of
the lookup tables, improving their hit-rate, and share them between dequantizers.

Each of the two-dimensional basis functions associated with a given input can be classified into one of four symmetries as
shown below:

Type A:

DV

HQ
, Type B:

−
−

DV

HQ
, Type C:

−− DV

HQ
, and Type D:

−

−
DV

HQ
, (3)

13

where Q is the upper-left quadrant of the basis function, RQH = , QRV = , RQRD = , and

=

0001

0010

0100

1000

R .

In other words, H is the horizontal mirror image of Q, V is its vertical mirror image, and D is mirrored in both dimensions.
The recognition of these basis function symmetries allows the number of accumulators to be reduced by a factor of four.
Table 2 classifies the symmetries of the 64 basis functions in an 8x8 transform.

V \
U 0 1 2 3 4 5 6 7

0 A B A B A B A B
1 C D C D C D C D
2 A B A B A B A B
3 C D C D C D C D
4 A B A B A B A B
5 C D C D C D C D
6 A B A B A B A B
7 C D C D C D C D

Table 2. Symmetry types for the basis functions in an 8x8 transform.

The improved FMIDCT algorithm requires four N2/4 accumulator arrays, QA, QB, QC, and QD, one for each symmetry type.
Only the upper left quadrant of the basis vector is computed for any symmetry, thereby reducing the required computation by
a factor of four. As each element of the input array is processed its contribution is accumulated into the appropriate array
according to Table 2. Finally, the four accumulator arrays are merged to form the intensity values as follows:

RQQQQRD

QQQQRV

RQQQQH

QQQQQ

DCBAF

DCBAF

DCBAF

DCBAF

)(

)(

)(

+−−=
−−+=

−+−=
+++=

(4)

Where QF, HF, VF, and DF are the four quadrants in a final block of luminance or chroma values. Computing the quadrants in
two butterfly stages as shown below can reduce the three operations per output element implied in equation 4:

RBBRD

BBRV

RBBH

BBQ

QQBQQB

QQBQQB

abF

baF

bbF

aaF

DCbDCa

BAbBAa

)(

)(

)(

21

21

21

21

22

11

−=
−=

+=
+=

−=+=
−=+=

(5)

Thus the total number of operations required for the improved FMIDCT is (L/4 + 2) N2, where L is the number of non-zero
coefficients, versus LN2 for the original implementation. For all values of L greater than 2 the new formulation requires fewer
operations. When L equals 2 no more that 2 of the quadrant accumulator arrays will contain nonzero values, thus equation 6
can be simplified such that no more than one operation is required to unfold the symmetries. When L equals 1 the merger
requires no accumulation.

14

3.3 Lookup Tables and Caching Techniques

In the original FMIDCT implementation the dequantization process was assumed to have only two independent variables, the
quantized symbol and the quantizer scale. Since the quantizer scale typically varies from element to element of the input
vector, the original FMIDCT required N2 separate tables. The dequantization process, however, is often more complex—
containing as many as four independent variables. For instance, in MPEG-1 the dequantizer is defined by four parameters, a
31-level quantizer scale defined for each macro-block, a coefficient quantizer value for each element of the input vector, a
binary variable based on whether the block is intra-frame or inter-frame encoded, and the quantized symbol. Implementing
the table lookup function as described in the original FMIDCT would result in a factor of 62 increase in table size. In addition
to the dramatic increase in storage requirements the hit-rate of the hashing-based lazy-evaluation technique is considerably
reduced, thereby increasing the number of multiplies.

Another important property of the underlying basis vectors is there are only S unique sets. This reflects the fact that each of
the basis functions with U unique coefficients shares the same U coefficients. So in the case of an 8x8 transform, all the basis
functions with ten unique coefficients share in common the same coefficient values as all other basis vectors with ten
coefficients. Therefore, it is conceivable that several different combinations of dequantization parameters might resolve into
the same value. The improved version of the FMIDCT uses a two-level table lookup for dequantization and the scaling of
basis functions. This permits the tables’ contents to be shared between dequantizers.

The technique is described as follows. A hashing function, H(p), is applied to the parameter vector p containing the four
dequantizer parameters. The result is used to index the first level table, called the dequantizer cache. Each entry of the
dequantizer cache is composed of a key parameter vector k and an index id into the second table, which stores the scaled basis
vectors. If k matches p then it is used to index one of S tables, one for each of the unique basis vector sets and the scaled
basis vector is constructed from the values stored there. If k does not match p then the appropriate dequantizer is invoked
with parameter vector p, the dequantized value replaces id and k replaced by p. The dequantized value id is then used as an
index into the second level table as before. The key values in the dequantization cache should be first initialized to an invalid
state (we have used the fact that the quantizer symbols cannot have a value of zero). The process is shown with sample code
in the Appendix.

4. IMPLEMENTATION & RESULTS

We have implemented an MPEG-1 video player in as a Java applet that utilizes our improved FMIDCT algorithm. This
applet is capable of decoding and displaying 176 x 144 video sequences at rates of approximately 28 frames per second, and
352 x 240 sequences at 11 frames per second using Internet Explorer 4.0 on a Pentium computer with PII 266 MHz
processor. Table 3 gives the results for sample sequences gathered from various Internet locations. While the player is
capable of playing them directly from their respective sources, the results shown here are for sequences that have been
downloaded to local storage before being played. Had they been played directly across the Internet, the frame rates would
have been slower reflecting network bottlenecks rather than decoding time. The average performance of decoding and
displaying an MPEG video sequence seems to be on the order of 670,000 pixels per second; with a three-fold increase in the
performance when the pictures are decoded but not displayed, achieving 1.8 million pixels per second. This illustrates our
previous suggestion that Java’s display technology hinders the performance of the player, consuming two-thirds of the total
time needed to decode and display the pictures. Future releases of Java promise to reduce this problem. In practice, Internet
broadcasts take network bandwidth limitations into consideration, limiting the dimensions and frame rates to those
manageable by our player. For instance, most Internet broadcast video has an image size of 176 x 144 and frame rates of 15
frames per second or less. It is worth noting that we have encountered other Java applets that play MPEG video via the
Internet, to which our player compares favorably.11,12

15

Video Clip Width Height Pixels Decode rate Pixels/sec Display rate Pixels/sec
30way 160 112 17,920 115 2,060,800 36.88 660,890
benylin 176 144 25,344 99.5 2,521,728 28.71 727,626
cart 240 180 43,200 28.7 1,239,840 16.25 702,000
daimler 368 272 100,096 14 1,401,344 6.05 605,581
glacier 200 100 20,000 90.4 1,808,000 38.2 764,000
hill 240 180 43,200 40.2 1,736,640 16.75 723,600
ligther 176 144 25,344 73.1 1,852,646 25.46 645,258
llupanav 160 128 20,480 79.7 1,632,256 24.86 509,133
mjackson 160 120 19,200 110.3 2,117,760 32.88 631,296
ts 352 240 84,480 15.7 1,326,336 7.7 650,496
wg_wt_1 304 224 68,096 29.8 2,029,261 10.9 742,246

Average 1,793,328 669,284

Table 3. Frame rates achieved with various sample video sequences.

Our modular source-player design enabled us to implement a picture-in-a-picture player. Figure 3 shows a screen capture of
an applet playing two video streams simultaneously. The user can resize and move each window dynamically via mouse
interaction. This applet and other demonstrations are available at our Internet site.8

Figure 3. Single player with textual video controls (left) and a picture-in-a-picture example with visual controls (right).

5. CONCLUSIONS

We have presented an efficient streaming MPEG-1 video player implemented entirely in Java, which eliminates the need to
pre-install native software and is well suited to small devices. The player owes its efficiency to an improved forward-
mapping IDCT algorithm described here as well. Our modular design provides viewers with their own customized session,
which we demonstrated in the picture-in-a-picture example.

Further tests and enhancements to this player include the implementation of the trade-off between quality and speed feature,
described by McMillan and Westover. For example, the IDCT algorithm can run with greater speed when the video is viewed
at reduced size, performing approximately ¼ the amount of computation when the user resizes the video to ½ its original
width and height. It is also possible to use this feature to improve the frame rates of video with large pictures by playing them
at reduced size or reduced quality. However, this feature was not envisioned with MPEG video in mind and some difficulties
exist in using it here. A crude application of this feature to intra-coded frames would result in compounded degradation of
predicted frames, introducing new artifacts into the decoded stream. Another feature that we would like to investigate is rate
control. Currently, we are playing the sequences at the fastest achievable rates, which are generally below the sequences’
original frame rates. It is possible to drop frames by avoiding decoding them, but the structure of MPEG video makes this

16

feature problematic because of inter-frame dependencies. For example, if we decided to decode all intra-coded frames in
anticipation that other frames will depend on them, we may encounter sequences made up entirely of I-frames, for which this
technique will fail to speed the play back. Alternatively, we could defer decoding P or I-frames that we decide to skip until
we encounter other frames that depend on them. Such method is complicated, demands more memory, and does not
guarantee speed either. Finally, we are currently using this framework to design and implement other players in the context of
the Computational Video project, such as a players for motion-JPEG video and other special purpose video.

6. ACKNOWLEDGEMENTS

This work is supported by DARPA agreement number F30602-97-1-0283. The video sequences used in our demonstrations
and statistics were downloaded from various Internet sources reached via MPEG.ORG’s Web site.10

7. REFERENCES

1. Kamanagar, F. A. and K. R. Rao, “Fast Algorithms for the 2-D Discrete Cosine Transform”, IEEE Trans. On Computers,
vol. C-31, no. 9, pp. 899-906, Sep 1982.

2. LeGall, D. “MPEG: A Video Compression Standard for Multimedia Applications”, Com. of the ACM, vol. 34, no. 4, pp.
46-58, April 1991.

3. Fielding R. et al, "Hypertext Transfer Protocol - HTTP/1.1", Internet RFC 2068, January 1997.
4. McMillan, Leonard and Lee Westover, “A Forward-Mapping Realization of the Inverse Discrete Cosine Transform”,

Proceedings of the Data Compression Conference (DCC ‘92), IEEE Computer Society Press, March 24-27, pp. 219-228,
1992.

5. Rao, K.R. and P. Yip. Discrete Cosine Transform: algorithms, advantages, applications. Academic Press, Boston, 1990.
6. Vetterli, M. and H. Nussbaumer, “Simple FFT and DCT Algorithms with Reduced Number of Operations”, Signal

Processing, vol. 6, pp. 267-278, Aug 1984.
7. http://java.sun.com
8. http://compvid.lcs.mit.edu/cv/
9. http://bmrc.berkeley.edu/projects/mpeg/
10. http://www.mpeg.org
11. http://www.dcc.uchile.cl/~chasan/MPEGPlayer.zip
12. http://rnvs.informatik.tu-chemnitz.de/~ja/MPEG/JITVERS/MPEG_Play.html

APPENDIX

The following Java code fragment demonstrates the first stage of table lookup associated with the dequantizer cache:

// Dequantizer cache
private int cacheKey[] = new int[4096];
private int cacheEntry[] = new int[4096];

// Each entry in icoeff packs two values: position in the 8x8 block and quantized DCT coefficient
private void dequantize(int qscale, int []icoeff, byte []qmatrix, int type) {
 // Store output in place. We will use the results in the IDCT method
 // (not shown here) to look up the scaled basis vectors
 int []ocoeff = icoeff;

 int i, j, k, index, key, level, qval;

 // DC of intra-coded block
 j = k = 0;
 if (type == 0) {
 level = icoeff[j++];
 level >>= 8;
 ocoeff[k++] = (level + 2048) * 32 << 8;
 }

 // Process all input coefficients
 while ((level = icoeff[j++]) != 0) {
 i = level & 63; // position in 8x8 block
 level >>= 8; // quantized DCT coefficient
 qval = qmatrix[i]; // quantization value for this position

 // Pack the four-parameter vector p into a single integer
 key = (level << 16) | (qval << 8) | (type << 5) | qscale;

17

 // Determine hashed index H(p)
 index = (level + ((qval - 16) << 4) + ((qscale - 8) << 8) + (type << 11)) & 0xfff;

 if (cacheKey[index] == key) { // k stored in cache matches p
 level = cacheEntry[index]; // retreive dequantized coefficient from cache
 } else {
 // Invoke appropriate dequantizer
 if (type == 0) level = (level * qscale * qval) >> 3;
 else level = ((2 * level + ((level >> 31) | 1)) * qscale * qval) >> 4;
 if (level == 0) continue;
 if ((level & 1) == 0) level -= (level >> 31) | 1;

 // Clamp dequantized coefficient to interval [-2048, 2047]
 if (level > 2047) level = 2047;
 else if (level < -2048) level = -2048;

 // Convert dequantized coefficient into index of scaled basis vector
 // in the second table (we add 2048 to avoid negative indices)
 level = (level + 2048) * 32;

 // Store entry in dequantizer cache
 cacheKey[index] = key; // replace k by p
 cacheEntry[index] = level; // replace id with dequantized coefficient
 }
 ocoeff[k++] = (level << 8) | i; // pack level and index into output coeff
 } // No more input coefficients
 ocoeff[k] = level;
}

18

NAIVE – Network Aware Internet Video Encoding

Hector M. Briceño
MIT

hbriceno@lcs.mit.edu

Steven Gortler
Harvard University

sjg@cs.harvard.edu

Leonard McMillan
MIT

mcmillan@lcs.mit.edu

Abstract

The distribution of digital video content over computer networks
has become commonplace. Unfortunately, most digital video en-
coding standards do not degrade gracefully in the face of packet
losses, which often occur in a bursty fashion. We propose an new
video encoding system that scales well with respect to the network’s
performance and degrades gracefully under packet loss. Our en-
coder sends packets that consist of a small random subset of pixels
distributed throughout a video frame. The receiver places samples
in their proper location (through a previously agreed ordering), and
applies a reconstruction algorithm on the received samples to pro-
duce an image. Each of the packets is independent, and does not
depend on the successful transmission of any other packets. Addi-
tionally, each packet contains information that is distributed over
the entire image. We also apply spatial and temporal optimization
to achieve better compression.

1 Introduction

With the advent of the internet, the distribution of digital video con-
tent over computer networks has become commonplace. Unfortu-
nately, digital video standards were not designed to be used on com-
puter networks. Instead, they generally assume a fixed bandwidth
and reliable transport from the sender to the receiver. However, for
the typical user, the internet does not make any such guarantees
about bandwidth, latency or errors. This has lead to the adaptation
or repackaging of existing video encoding standards to meet these
constraints. These attempts have met with varying levels of success.
In this paper we propose to design a new video encoding algorithm
specifically for computer networks from the ground up.

The internet is a heterogeneous network whose basic unit of
transmission is a packet. In order to assure scalability, the internet
was designed as a best effort network - i.e. it makes no guarantees
that a packet sent by a host will arrive at the receiver or that it will
be delivered in the order that it was sent. This also implies that it
makes no guarantees on the latency of the delivery.

A video encoding system designed for computer networks would
ideally satisfy the following requirements. The transmitted data

stream should be tolerant to variations in bandwidth and error rates
along various networking routing paths. A given data stream should
also be capable of supporting different qualities of service. Where
this quality of service might be dictated by local resources (such
as CPU performance) or the other user requirements. These re-
quirements are only partially satisfied by existing video encoding
systems. In this paper we propose a flexible video encoding system
that satisfies the following design goals:

� The system must allow for broadcast. We would like a system
where video can be transmitted to a large audience in real
time with no feedback to the source. This allows for arbitrary
scalability.

� The network can arbitrarily drop packets due to congestion
or difference of bandwidths between networks or receivers.
Since this system is targeted to error prone networks, it must
perform well under packet losses.

� The sender should be able to dynamically vary the bandwidth
and CPU requirements of the encoding algorithm. In order
to guarantee a quality of service variations in bandwidth may
be necessary. For instance, at scene changes or during a com-
plex sequence. Variations in bandwidth could also occur due
to resource limitations at the source such as channel capacity
and CPU utilization, or by a policy decision.

� The receiver should be able construct a reasonable approxi-
mation of the desired stream using a subset of the data trans-
mitted. Furthermore, the receiver may also intentionally ig-
nore part of the data received to free up resources in exchange
for reduced quality.

� The quality of the video should degrade gracefully under
packet loss by the network or throttling by the sender or the
receiver.

� Variations in the algorithm should support a wide range of
performance levels, from small personal appliances to high-
end workstations.

� Users should be able to quickly join a session in progress.

These goals place severe constraints on how the system can be
built.

We consider packets as the basic unit of network transmission
[13]. A video frame generally spans many packets. System through-
put and quality are affected by throttling packets at the sender,

19

goodelle
Appendix B:

packet loss in the network, and ignoring of packets at the receiver.
Therefore, we choose to regard packets as atomic in our system
design. For scalability and error handling we avoid packets that
contain prioritized data or interdependencies, such as the clustering
of data or differential encoding. These goals motivate our design
principles:

Globalness– Individual packets should contain enough infor-
mation to reconstruct the whole image. They also should be ad-
ditive - each additional packet increases the reconstructed image
quality. Conversely, for each packet that is dropped by the sender,
network or receiver, the image quality degrades.

Independence– All packets are independent of each other; any
one of them can be dropped without abrupt changes in quality, and
in many cases we can process them out of order.

These principles are quite different than current video encod-
ing systems. Typical video encoding algorithms (i.e. H.263 [1] or
ISO MPEG), use compression and encoding techniques that make
packets interdependent; when one packet is lost, all other packets
that are related to it lose their usefulness.

We propose an encoding system that scales well with respect
to the sender’s performance, the number of receivers, and the net-
work’s performance. This system degrades gracefully under packet
loss. Briefly stated: the encoder sends packets that consist of a
small random subset of pixels distributed throughout a video frame.
The receiver places samples in their proper location (through a pre-
viously agreed ordering), and applies a reconstruction algorithm on
these samples to produce an image. Notice that since each packet
contains a small random subset of the image, there is no ordering
or priority for packets. We also apply spatial and temporal opti-
mization to achieve better compression without compromising our
global and independence principles.

Many other researchers have shown that there is an inherent
tradeoff between the amount of compression and the degree of ro-
bustness to data loss [14]. Our work is no exception; our achieved
image quality at a given level of compression is below the best
known channel encoders. For this price, we obtain the ability to re-
construct images even when receiving one packet per frame. Find-
ing fair ways to measure this tradeoff remains as future work.

2 Previous Work

Video encoding algorithms specifically tailored for the internet have
been previously proposed. ISO MPEG-1 provides high compres-
sion ratios, and it allows for bitstream resynchronization using slices.
Generally slices span multiple packets, and few encoders make an
effort to align slices within packet boundaries. The variable length
encoding and difference encoding used by MPEG-1 is very effec-
tive in reducing the bitrate, but both techniques make assumptions
about what has been previously received. If these assumptions are
wrong (caused by packet loss) [8], artifacts will develop in the new
frame. Other discrete cosine transform (DCT) based algorithms
like H.261, have been successfully adapted for use in computer net-
works by using a technique sometimes called “conditional replen-
ishment” [21]. The idea is, that instead of encoding the differences
from previous frames, they either keep old blocks or entirely re-
plenish new blocks independently encoded. These techniques re-
quire that all blocks are replenished within a specified period of
time. During heavy packet losses, important areas may not be up-
dated until the losses subside. This is an all or nothing approach: a
block will completely reach its new state or not change at all.

Layering approaches have partly alleviated this last problem.
Algorithms like L-DCT [2] and PVH [21], use a base channel to
encode a low quality representation of the block; and use additional
channels to encode enhancement information to reproduce a more
faithful block. Because enhancement layers usually depend on the
base layered being received, when the base layer packets are lost,
the block cannot be updated at all.

Error handling can also be incorporated into the network layer.
By using error correcting codes, or retransmission based schemes,
errors can be minimized or eliminated, as to create the illusion of a
reliable network stream. Open-loop approaches [32] (i.e. those that
don’t require feedback) such as, Forward Error Correction (FEC),
eliminate errors when they are well characterized. Unfortunately,
these systems must include enough redundancy in advance to deal
with the worst-case packet loss rate scenario. This leads to inef-
ficiencies. The overhead for error correction also increases total
network load. Thus the entire network is taxed due to the worse
performing route [26, 12]. The alternative is to use a closed-loop
approach. Close-loop approaches [28, 25, 7, 33] , where the re-
ceivers request the retransmission of lost packets, have the draw-
back of higher latency and are difficult to scale [6, 4]. Additionally,
since packet loses generally occur during congestion, these requests
and subsequent retransmissions can make matters worse.

Robustness to data loss can be achieved using multiple descrip-
tion coding (MDC) [23, 29, 16]. MDC coders build correlation be-
tween the symbols allowing for good reconstruction from subsets
of the data. Much of the previous work has dealt with two-channel
coding [23], which can withstand the loss half of the transmitted
data. There has also been some preliminary work on many-channel
coding [16, 29]. One can think of the NAIVE encoding as an ex-
treme example of MDC, where no decorrelating transform is ap-
plied to the original pixel data, and pictures can be reconstructed
from any received data.

The algorithm we propose bears many resemblences to work
in error concealment [3, 11, 34, 31]. While most error conceal-
ment techniques are built upon existing standards, our technique
proposes an entirely novel encoding scheme. Our encoding scheme
is tolerant to bursty errors, and does not require resynchronization.
Our reconstruction algorithm is fast, and makes no a-priori assump-
tions about the existance of specific nearby blocks or pixels.

3 The Algorithm

The Network Aware Internet Video Encoding (NAIVE) system sends
a random subset of samples for each video frame and reconstructs
the frame at the receiver. The random samples are distributed across
one or more network packets. Given a sufficiently uniform sam-
pling distribution, each packet can be considered as a subsampled
version of the original image. Thus, each packet satisfies our glob-
alness objective. Samples are selected in a random sequence in
order to hide errors caused by packet loss and to reduce aliasing ar-
tifacts such as blockiness at low sampling densities [22]. If packets
of samples are lost, the degradation is distributed evenly through-
out the reconstruction instead of being localized as is typical of
the sequentially encoded blocks used in other compression meth-
ods. Furthermore, the reconstruction artifacts due to packet loss
should lead to an apparent loss in resolution (blurring) rather than
introduce spurious structure as would be expected from an uniform
subsampling. Such structure is generally visible even when using
higher order reconstruction filters.

Following our design principles, each packet contains samples

20

Level 0

Level 3

Level 2

Level 1

Pull PushInput

Figure 1: GrayscaleSusieimage pyramid reconstruction. The input
samples are located in multiple levels of the pyramid. Notice that
input samples in level 1 and 2 correspond to the background and
smooth regions of the image.

uniformly distributed throughout the whole image, and independent
of any previous packet sent. Our encoding system allows for ar-
bitrary packet loss, thus there is no guarantee that the client has
received any particular set of image information. This presents
us with the problem of reconstructing an image from irregularly
spaced samples.

3.1 Image Reconstruction

A viable solution to this image reconstruction problem must have
the following features:

� The method must run at frame rate. Thus, it is too expensive
to solve systems of equations (as is done when using global
spline methods [30, 19]) or to build spatial data structures
(such as a Delauney triangulation [24]).

� The method must deal with spatially scattered samples. Thus
we are unable to use standard interpolation methods, or Fourier-
based sampling theory.

� The method must create reconstructions of acceptable qual-
ity.

In this paper we adapt the pull-push algorithm of Gortler et
al. [15]. This algorithm is based on concepts from image pyra-
mids [9], wavelets [20] and subband coding [18], and it extends
earlier ideas found in [10] and [22]. The algorithm proceeds in two
phases called pull and push. During the first phase, pull, a hierar-
chical set of lower resolution data sets is created in an image pyra-
mid. Each of these lower resolution images represents a “blurred”
version of the input data; at lower resolutions, the gaps in the data
become smaller (see pull column in figure 1). During the second
phase, push, this low resolution data is used to fill in the gaps at
the higher resolutions (compare level 2 pull and push in figure 1).
Care is taken not to destroy high resolution information where it is
available. Figure 2 shows the reconstruction of the lenna grayscale
from 5% and 22% of the original pixels.

(a)

(b)

Figure 2: Grayscale lenna image samples and reconstruction. Using
22% original pixels (a), and using 5% of original pixels (b). The
images in the left column show the input pixels. The right column
shows our reconstruction

3.1.1 Organization

The algorithm uses a hierarchical set of image pixels with the high-
est resolution labeled0, and lower resolutions having higher in-
dices. Each resolution has 1/2 the resolution in both the horizontal
and vertical dimensions. For our 320 by 240 images, we use a 5
level pyramid. Associated with the ij’th pixel valuepri;j at reso-
lution r is a weightwr

i;j . These weights, representing pixel con-
fidence, determine how the pixels at different resolution levels are
eventually combined.

3.1.2 Initialize

During initialization, each of the received pixels is used to set the
associated pixel valuep0i;j in the high resolution image, and the
associated weightw0

i;j for this pixel is set tof . f is the value chosen
to represent full confidence. The meaning off is discussed below.
All other weights at the high resolution are set to 0.

3.1.3 Pull

The pull phase is applied hierarchically, starting from the highest
resolution and going until the lowest resolution in the image pyra-
mid. In this pull phase, successive lower resolution approximations
of the image are derived from the adjacent higher resolution by per-
forming a convolution with a discrete low pass filter~h. In our sys-

21

tem, we use the “tent” sequence.~h[�1::1] � [�1::1]:"
1=16 1=8 1=16

1=8 1=4 1=8

1=16 1=8 1=16

#

The lower resolution pixels are computed by combining the higher
resolution pixels using~h. One way to do this would be to compute

w
r+1

i;j
:=

P
k;l

~hk�2i;l�2j w
r

k;l

p
r+1

i;j
:= 1

w
r+1

i;j

P
k;l

~hk�2i;l�2j w
r

k;l p
r

k;l

(1)

This is equivalent to convolving with~h and then downsampling by
a factor of two.

This computation can be interpreted as follows: Suppose we
have a set of continuous tent filter functions associated with each
pixel in the image pyramid. Suppose~B0

i;j(u; v) is a continuous
piecewise bilinear linear tent function centered ati; j and two units
(high resolution pixels) wide,~B1

i;j(u; v) at the next lower resolu-
tion is a tent function centered at2i; 2j and is four units (high reso-
lution pixels) wide,~B2

i;j(u; v) at the next lower resolution is a tent
function centered at4i; 4j and is 8 units wide, and so on. These
continuous functions are related using the discrete sequence~h:

~B
r+1

i;j
(u; v) =

X
k;l

~hk�2i;l�2j
~B
r

k;l(u; v)

This means that one can linearly combine finer tents to obtain a
lower resolution tent. The desired multiresolution pixel values can
be expressed as an integral over an original continuous imageP (u; v)

using the~Br

i;j(u; v) as weighting functions:Z
1

�1

Z
1

�1

du dv ~B
r

i;j(u; v)P (u; v) (2)

If one approximates this integral with a discrete sum over the re-
ceived pixel values, one obtains

w
r

i;jp
r

i;j =
X
k;l

~B
r

i;j(k; l)p
0

k;lw
0

k;l (3)

where

w
r

i;j =
X
k;l

~B
r

i;j(k; l)w
0

k;l

It is easy to show that the values computed by Equation 3 can be
exactly and efficiently obtained by applying Equation 1 hierarchi-
cally.

This method creates good low resolution images when the orig-
inal samples are uniformly distributed. But when the original sam-
ples are unevenly distributed, Equation 3 becomes a biased estima-
tor of the desired low resolution value defined by Equation 2 for it
overly emphasizes the over sampled regions. Our solution to this
problem is to replace Equation 1 with:

wr+1

i;j
:=

P
k;l

~hk�2i;l�2j min(wr

k;l
; f)

pr+1
i;j

:=
1

w
r+1

i;j

P
k;l

~hk�2i;l�2j min(wr

k;l
; f) pr

k;l

(4)

The valuef represents full confidence, and themin operator is
used to place an upper bound on the degree that one image pyra-
mid pixel corresponding to a highly sampled region, can influence

(a) (b)

Figure 3: Grayscale lenna test image reconstruction with 10% of
samples: (a) using f = 1, (b) f = 1/8

the total sum. Any value of1=16 � f � 1 creates a well defined
algorithm. Iff is set to one, then no saturation is applied, and this
equation is equivalent to Equation 1. Iff is set to1=16, then even a
single sample under the sum is enough to saturate the computation
for the next lower resolution. In the system we have experimented
with many values, and have obtained the best results withf = 1=8.
Although complete theoretical analysis of the estimator in Equa-
tion 4 has yet to be completed, our experiments show it to be far
superior to Equation 1. Figure 3 shows the reconstruction of the
lenna grayscale image with 10% of its samples reconstructed using
(a) f = 1, (b) f = 1/8.

The pull stage runs in time linear in the number of pixels summed
over all of the resolutions. Because each lower resolution has half
the density of pixels, the computation time can be expressed as a ge-
ometric series and thus this stage runs in time linear in the number
of high resolution pixels at resolution0.

3.1.4 Push

The push phase is also applied hierarchically, starting from the low-
est resolution in the image pyramid, and working to the highest res-
olution. During the push stage, low resolution approximations are
used to fill in the regions that have low confidence in the higher
resolution images. If a higher resolution pixel has a high associated
confidence (i.e., has weight greater than or equal tof), we disre-
gard the lower resolution information for that high resolution pixel.
If the higher resolution pixel does not have sufficient weight, we
blend in the information from the lower resolution.

To blend this information, the low resolution approximation of
the function must be expressed in the higher resolution. This is done
using an interpolation sequence also based on the tent sequence but
with a different normalization:h[�1::1] � [�1::1]:"

1=4 1=2 1=4

1=2 1 1=2

1=4 1=2 1=4

#

Push is done in two steps: we first compute temporary values

tp
r

i;j :=
X
k;l

hi�2k;j�2l p
r+1

k;l

This computation is equivalent to upsampling by a factor of 2 (adding
0 values), and then convolving withh. These temporary values are

22

now ready to be blended with thepr values already at levelr, using
thewr as the blending factors.

p
r

i;j := (1�
w

r

i;j

f
) tp

r

i;j +
w

r

i;j

f
p
r

i;j

analogous to the “over” blending performed in image composit-
ing [27].

3.1.5 Compression in the NAIVE Framework

To some extent, NAIVE achieves both compression and resiliency
by relying on a random subset of samples from an image to re-
construct the missing information. However, neither the selection
nor reception of the samples is related to the specific content of the
transmitted image. Since the goal of any compression algorithm is
the elimination of redundancy in the target signal, we have also de-
veloped techniques to exploit the specific contents of a given video
stream to achieve greater compression.

In particular, video sequences commonly exhibit significant spa-
tial and temporal correlations that are generally concentrated in
lower frequency ranges. At first glance it would appear that a ran-
dom sampling strategy, like the one used in NAIVE, runs counter
to any effort to reduce spatial and temporal correlation (since ran-
domizing a correlated function tends to decorrelate it). However, if
the notion of a sample is expanded to include not only pixels from
the highest resolution level of the pyramid hierarchy, but also the
subsequent lower resolution levels, significant reductions in spatial
correlation can still be achieved. Likewise, if the persistence of a
given sample from the reconstruction pyramid is lengthened from
a single frame period to multiple frame intervals, similar temporal
reductions are also possible.

Often there are cases when an image encoder benefits from
transmitting only low-resolution information about some region.
Perhaps that region contains little or no high frequency detail, or
perhaps the region is considered insignificant and the current instan-
taneous bandwidth available does not support the transmission of a
full resolution image. To accommodate this ability our algorithm
allows the encoder to insert lower resolution samples directly into
an appropriate level of the pull-push image pyramid,p

r

i;j for r > 0.
When low-resolution samples are received they are placed directly
into the reconstruction pyramid at the appropriate resolution. Also,
the ”pulling” of higher resolution samples onto a lower-resolution
sample is suppressed. In order to effectively apply this capabil-
ity both perceptual and information theoretic concerns should be
considered. Thus, as is typical of most digital video compression
methods, there is a considerable art to making the best use of this
capability. More details about how multi-resolution samples are
encoded are given in subsection 4.1.

In video sequences image regions can change slowly. Our sys-
tem takes advantage of this temporal coherence by allowing pixels
from previous frames to be included in the pull-push reconstruc-
tion process. The persistence of a given sample is controlled by
two mechanisms. First, all samples are aged at a constant rate with
newer samples superceding older ones. After a sample’s age limit
is reached, it no longer takes part in the image reconstruction pro-
cess. Secondly, entire regions, or blocks, of old samples can be
invalidated. This invalidation is typically used in areas of rapid mo-
tion or at scene changes. There are many tradeoffs to be considered
when using these methods. More information about the aging and
invalidation of samples is described in subsection 4.2.

0
1
2

N-1
N
N+1

256N-1

0 1

N-1

2

Offset Table

Image Blocks

Figure 4: Offset Table: There are N 16x16 blocks in the image.
The i’th entry points to a sample in block number i modulo N. On
any selection of N consecutive entries, there is a sample from every
block

3.2 Packetization

The pull-push algorithm provides a means of reconstructing an im-
age from non-uniform samples. From our principle of globalness
we need to pick samples from the whole image. And these have to
be selected at random to avoid visible artifacts and to allow the ap-
pearance of simultaneous update everywhere in the image [5]. We
guarantee coverage of the whole image by dividing it into 16x16
blocks and making succesive passes over the image selecting one
random sample from each block on each pass.

In order to minimize the information transmitted, the sender and
the receiver agree on the ordering of samples, such that the sender
only needs to send the location of the first sample in a packet. This
is done as follows. The image is split into 16x16 blocks, this means
that there are 256 samples per block. Say there are N blocks in
an image. We generate a table, called the “offset table”, that has
256*N entries. The i’th entry in the table points to a sample in block
numberi mod N. The first entry contains the coordinate of a random
sample in the first block; the second entry contains the coordinate of
a sample in the second block; The N+1th entry contains the location
of a sample again in the first block. The random ordering of the
samples within a block is established by assigning a pseudo-random
number to each pixel. The pixels are then sorted into a list according
to this random number. The offset table can then be constructed by
selecting a pixel from each of the N lists. The sender and receiver
are synchronized through the transmission of a seed for the random
number generator. With the seed and frame size information the
receive can construct the offset table. This is the only information
that must be transmitted via a reliable protocol such as TCP/IP.

This ordering guarantees that if we pick N consecutive samples,
they will span the whole image without large clusters. Additionally,
we can compute the block that a sample belongs from its table offset
modulo N. See figure 4.

The reconstruction explained so far applies to a grayscale im-
age. This same idea can be extended to the chrominance compo-
nents of color images. We encode color images by sampling the
chrominance components at a resolution 1/4 of the luminance im-
age, similar to MPEG. To encode them, we maintain another offset
table with 8x8 blocks to correspond to the 16x16 blocks of the lu-
minance components. We encode the chrominance samples inde-

23

Frame
Number

#UV samples Offset
Y samples

Offset
UV samples

UV samples Y samples

Figure 5: Packet Format

pendently of the luminance samples.

We need to send very little overhead information with each
packet. Each packet consists of: the frame number; table offset
of first chrominance sample, number of chrominance samples, and
the samples themselves; and table offset of first luminance sample,
with the remaining of the packet filled with luminance samples (see
figure 5). We use 1024 bytes as our default packet size. This struc-
ture satisfies our global and independence properties. If a packet
has more than N luminance samples (where N is the number of
blocks in a frame), then there will be one sample in every block of
the image guaranteed by the way we traverse the offset table.

4 Enhancements

The baseline approach described above works well for images whose
details are uniformly distributed throughout the whole image. Most
images, though, have localized regions of detail. And most se-
quences bear a high level of temporal coherency across frames. We
can take advantages of these characteristics to produce better qual-
ity video with the same or less amount of data.

4.1 Spatial Locality

In image regions with mostly low frequency content, our encoding
system allows us to directly transmit lower resolution samples, and
the receiver can insert these directly into lower resolution pyramid
levels.

In our encoding system, we encode the sample value and reso-
lution level in the same byte. We use 7 bits of precision for level 0
samples, and 6 bits of precision for level 1 and level 2 samples. If
the least significant bit is 0, the sample is a level 0 sample; if the
least significant bits is 01 or 11 the sample is a level 1 or level 2
sample respectively. With this change we keep the packet structure
unchanged, except for how sample values are interpreted.

Samples that are inserted at lower resolution levels, correspond
spatially to many more samples at finer levels. Thus, when a low
resolution sample is sent, fewer higher resolution samples are needed
for that block.

To manage the bookkeeping for this information, we use a spe-
cial table, called the SKIP TABLE. There is a SKIP TABLE entry
for each block. The SKIP TABLE contains the encoder/decoder
agreed upon number of samples for this block that will be skipped.
When a packet is received, all entries in the SKIP TABLE are ini-
tialized to 0; thus each block is guaranteed to have one sample.
When a sample is inserted into a lower resolution level, we load the
skip table entry for that block, with a predefined constant, agreed
upon by the sender and the receiver. In our system, when a sample
is sent for level 1, we skip the next 3 samples for this block. When
a sample is sent for level 2, we skip the next 15 samples for this
block.

Each time that block occurs in the sequence we inspect the skip
table entry to see if it is non-zero, if it is, we decrement the skip

table, and go to the next block without reading a sample from the
packet. Otherwise, we insert the current sample into the block ac-
cording to the offset table entry.

4.2 Temporal Locality

Temporal locality can be exploited even when packets are inde-
pendent of each other. MPEG and H.261 exploit temporal locality
by reusing block of pixels that are closely located in the previous
frame, encoding this location and their difference. In our approach,
we don’t make any assumptions about the previous frame or what
packets the receiver has processed. We simply take advantage of
the fact that pixels in a block may not change significantly across
many frames, in which case, we reuse them to reconstruct a higher
quality image. In NAIVE, pixels from previous frames can be kept
around for up to 20 frames, and used as equal participants in the
pull-push algorithm. When a block has changed significantly, a
KILL BLOCK signal is encoded for that block, and all pixels for
that block from previous frames are discarded. For scene changes,
a KILL ALL BLOCKS signal will discard all previous pixels from
previous frames.

We flush the previous frame samples for a given block by using
a special word (KILLBLOCK) instead of encoding the sample.
When this code is seen, the block that corresponds to the offset for
that sample, will be marked, and all corresponding samples from
previous frames are flushed. Additionally, we do not increment the
pointer into the offset table, such that the next sample in the stream
falls in the current block. We encode the KILLBLOCK signals
for new blocks in all the packets of a given frame. Currently, there
exists a possibility of reusing samples from a wrong frame under
few error scenarios; but this contition can be remedied by encoding
a sequence number with the KILLBLOCK signal (analogous to
MPEG-2 slice id information).

Blocks that do not change will slowly improve in quality be-
cause they are reusing samples from previous frames; therefore we
wish to add more samples to the blocks which are changing more
rapidly and are not reusing samples. We accomplish this by in-
serting negative values in the SKIP TABLE in the following way.
When a block is killed, we set its corresponding SKIP TABLE entry
to a negative value (currently -10). After we have gone around once
for all blocks in the image, we only visit blocks that have a nega-
tive SKIP TABLE entry and increment its SKIP TABLE for each
sample received. This continues until there are no more negative
SKIP TABLE entries left. This increases the reconstructed quality
of blocks that are not reusing previous samples. This does not vio-
late our globalness principle, since we still have at least one sample
per every block if they fit in a packet.

5 Results

In this section we evaluate the performance of our compression sys-
tem. Before we proceed it is important to note two caveats. First,
the policies of the encoder will greatly determine the quality of the
decompressed stream. The encoder can make many decisions. For
example, it can make decisions about which blocks to flush or keep,
what offset to start sending samples from, from which levels sam-
ples should be drawn, what proportion of luminance/chrominance
samples to use, among other decisions. We have manually found
reasonable settings for our video streams. In the optimal case, the
encoder would make these decisions automatically. Secondly, we
have used the signal-to-noise ratio metric (SNR) for evaluating our
results. It is well known that SNR is not an optimal measurement
for image quality. It is acceptable for comparing the algorithms

24

20

22

24

26

28

30

32

34

0 0.5 1 1.5 2 2.5 3

BPP

S
N

R
(d

B
)

infinity 8192 bytes 4096 bytes 1024 bytes 512 bytes

Figure 6: Rate-distortion curve on the grayscale 512x512 “Lena”
test image.

based on the same transform with different settings [17]. A better
measurement would be based on models of the human visual sys-
tem; but these are usually harder to implement or compute than the
SNR.

Figure 6 shows the rate distortion curve for 512x512 grayscale
image, compressed for different target bit per pixels (bpp) and dif-
ferent packet sizes. Large packet sizes are important for large im-
ages. If the packet is not larger than the number of blocks in an
image, then there will not be enough space to go around all the
blocks once, and more importantly, the algorithm will not make use
of the SKIP TABLE, which allows it to get more samples in needed
areas. The drawback of using large packets is that they are more
likely to fragmented and lost. When a packet is fragmented, and
one of its fragments get lost, the whole packet is lost. For small im-
ages, a packet size of 1024 bytes is adequate. For our experiments
we used a packet size of 1024 bytes because it is compatible with
the maximum packet size of most networks.

Figure 7 shows how the quality degrades gracefully for differ-
ent kinds of video sequences. For these sequences, temporal and
spacial locality has been used. The first sequence,Walk, contains
a men in suits walking from a car, the scene has high detail and
motion. The second sequence,Claire is a standard head and shoul-
ders shot. Lastly, theInterview, consists of three scenes: a person
walking into a room, a head and shoulders shot of the person talk-
ing inside the room, and close up of her face. All three sequences
contain 100 frames, and were encoded at 1bpp. To generate all the
data, the sequences were decoded with different packet drop rates
calculating the average SNR of all frames. The packet drop rate de-
termines the independent probability that a packet will be dropped.
Over a whole sequence, a video encoded at 1bpp and decoded with
a packet drop rate of 30%, will have a receive bpp of 0.7bpp. The
slope of all three curves is very similar, showing that it degrades
slowly regardless of the kind of video.

The algorithm handles bursty packet losses well. Figure 8 shows
the frame by frame SNR for the 10 secondInterview (320x240
color) sequence compressed at 0.33 bpp. This sequence is com-

15

17

19

21

23

25

27

29

31

33

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Received BPP

A
ve

ra
ge

 S
N

R
 (

dB
)

Walk Claire Interview

Figure 7: Average SNR of 3 color sequences with 100 frames en-
coded at 1 bpp2 and decoded with different packet drop rates yield-
ing different bpp. receive rates.

posed of three shots. The first 22 frames is a shot sequence of the
person walking into an office. The stride of the person and camera
angle makes the shot contain one slow motion frame and one fast
motion frame, to give the resulting wave-like shape for the SNR
during that shot. The second shot is a head and shoulders shot of
the person being interview in her office. This shot lasts until frame
77. The last shot is a close up of the person. The quality of the
image is above 30dB for most of the sequence, there is a short dip
between frame 77 and frame 78, but it does not take long to recover.

Figure 9 shows the same sequence under bursty packet loss.
The dashed line represents the actual bit rate during the reception of
each frame. This figure shows that even under heavy loss (receiving
less that 0.1 bpp), the quality does not degrade significantly. At the
end of the first burst, in frame 28, the quality level recovers rapidly.
Additionally, the quality hardly degrades during the second burst,
between frames 37 and 47.

The complexity of the algorithm is simple enough to allow a
software-only implementation. Table 1 shows the decoding frame
rate for different sequences. The algorithm was run on a common
Intel Pentium Pro 200Mhz processor running Linux and the X win-
dows system. The frame rate is not very sensitive to the amount of
data received. The decoding time is dominated by the pull-push al-
gorithm after all the samples received from the network have been
placed in the image. The color sequence ran at 50% lower frame
rate, than the comparable grayscale sequence. This makes sense,
since we have to reconstruct the chrominance data which is half the
size of the luminance data for color sequences. Displaying QCIF
sequences in real time would not be a problem, and with a faster
machine and an efficient display system, the same might be possi-
ble for CIF sequences.

6 Conclusions

The NAIVE system that we have presented is an initial step towards
a video compression system tailored specifically for computer net-
working environments. NAIVE satisfies our initial design goals. It
supports broadcast over large-area network and maintains scalabil-
ity. NAIVE is tolerant to packet loss at any point along the network

25

10

15

20

25

30

35
1 10 19 28 37 46 55 64 73 82 91 10
0

Frame Number

S
N

R
 (

dB
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ec

ei
ve

d
B

P
P

SNR bpp

Figure 8: Base: SNR for each frame vs. the bpp received per frame,
constant receive rate of 0.33 bpp

Test Sequence fps 1bpp fps 0.5bpp

interview (color 320x240) 23.5 25.3
susie (gray 352x240) 34.81 36.32
qclaire (gray 176x144) 76.7 84.9

Table 1: Decoding frame rates (without displaying) for different
sequences.

from the sender to the receiver. In fact, the intentional dropping
of packets at the source is one method of increasing the effective
compression of the bit stream. Similarly, the selective dropping
of packets at the receiver effectively sheds CPU load. A NAIVE
sender can also dynamically vary its transmission bandwidth when
required by the video sequence in order to maintain a given quality
level. In all cases, the receiver of a NAIVE video stream is able to
reconstruct a reasonable approximation of an entire frame using a
minimum of information (i.e. a single packet). The reception of ad-
ditional packets further enhances the quality of the frame. Finally,
our system degrades gracefully under severe packet losses.

Fundamentally, the randomizing of samples used in our NAIVE
method has the effect of decorrelating the input signal and effec-
tive compression methods essentially depend on highly correlated
input signals. Thus, our NAIVE algorithm sacrifices compression
ratio, as compared to other video compression techniques, in or-
der to achieve our design goals. We believe that other compression
techniques can be layered onto our NAIVE methods to achieve sub-
stantially improved compression. For instance, differential encod-
ing methods could be applied to all samples in a packet following
the initial sample. Variable length encoding techniques can be ap-
plied within individual packets to reduce redundancy in the trans-
mitted symbols. We are also hopeful that motion compensation
techniques can be applied within our framework by encoding mo-
tion vector for each block. These motion vectors would imply that
a block of samples in all pyramid levels would be copied to the
current block. Thus, the sender would make no specific assump-
tion concerning which samples are available at the receiver, only

10

15

20

25

30

35

1 10 19 28 37 46 55 64 73 82 91

Frame Number

S
N

R
(d

B
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ec

ei
ve

d
B

P
P

SNR bpp

Figure 9: Bursty: SNR for each frame vs. the bpp received per
frame, there are bursty errors, so the receive rate drops sporadically

that those samples within the transferred block would form the best
basis for reconstructing the desired block. It is also possible to in-
corporate embedded coding techniques to the samples within each
packet. This would potentially allow for trading off the quantization
of samples for increased sampling density.

Another shortcoming of our NAIVE method is that the sender
is fundamentally unable to make any quality guarantees to any par-
ticular receiver. The need for such a guarantee might arise based
from an economics driven approach where particular receivers pay
a premium for assurances of a given quality level. Layering is an ef-
fective technique for satisfying such requirements. We believe that
our NAIVE method could be extended to provide layering. Finally,
we plan to integrate audio into our framework in the near future.
We’ll either adapt the NAIVE mechanisms to audio or use one of
the standard protocols for audio distribution.

In summary, we view our NAIVE algorithm as starting point for
the development of a new class of video compression methods that
are well suited for computer networks. By considering the realities
of real networks we believe that is possible to define new classes of
algorithms that are scalable in broadcast applications and degrade
gracefully under variations in network activity.

Acknowledgements

We would like to thank Aaron Isaksen for his help in preparing our
videos. Support for this research was provided by DARPA con-
tract N30602-97-1-0283, and Massachusetts Institute of Technol-
ogy’s Laboratory for Computer Science.

References

[1] H.263: Video coding for low bitrate communication.Draft
ITU-T Recommendation H.263., May 1996.

26

[2] Elen Amir, Steven McCanne, and Martin Vetterli. A layered
dct coder for internet video. InIEEE International Conference
on Image Processing, pages 13–16, Lausanne, Switzerland,
September 1996.

[3] E. Asbun and E. Delp. Real-time error concealment in com-
pressed digital video streams.Proceedings of the Picture Cod-
ing Symposium 1999, April 1999.

[4] Ernst W. Biersack. A performance study of foward error cor-
rection in atm networks. InInternational Workshop on Net-
work and Operating System Support for Digital Audio and
Video (NOSDAV) 1993, pages 391–399, Heildelberg, Ger-
many, November 1993.

[5] G. Bishop, H. Fuchs, L. McMillan, and E. Scher Zaiger.
Frameless rendering: Double buffering considered harmful.
Computer Graphics (SIGGRAPH 94), pages 175–176, 1994.

[6] Jean-Chrysostome Bolot, Hugues Crepin, and Andres Vega
Garcia. Analysis of audio packet loss in the internet. InNOS-
DAV, pages 154–165, Durham, NH, 1995.

[7] Jean-Chrysostome Bolot, Thierry Turletti, and Ian Wakeman.
Scalable feedback control for multicast video distribution in
the internet. InACM Communication Architectures, Proto-
cols, and Applications (SIGCOMM) 1994, pages 58–67, Lon-
don, UK, 1994.

[8] J. Boyce and R. Gaglianello. Packet loss effects on mpeg
video sent over the public internet.ACM Multimedia, 1998,
1998.

[9] P. Burt and E. Adelson. Laplacian pyramid as a compact
image code.IEEE Transactions on Communications, 31(4),
April 1983.

[10] P. J. Burt. Moment images, polynomial fit filters, and the
problem of surface interpolation. InProceedings of Computer
Vision and Pattern Recognition, pages 144–152. IEEE Com-
puter Society Press, June 1988.

[11] Y. Chung, J. Kim, and C. Kuo. Dct based error concealment
for rtsp video over a modem internet connection.Interna-
tional Symposium on Circuits and Systems ’98, May 1998.

[12] I. Cidon, A. Khamisy, and M. Sidi. Analysis of packet loss
processes in high-speed networks.IEEE Trans. Info. Theory,
39(1), January 1993.

[13] D. D. Clark and D. L. Tennenhouse. Architectural considera-
tions for a new generation of protocols. InACM Communica-
tion Architectures, Protocols, and Applications (SIGCOMM)
1990, September 1990.

[14] A. A. El-Gamal and T. M. Cover. Achievable rates for mul-
tiple descriptions.IEEE Trans. Information Theory, 28:851–
857, 1982.

[15] S. Gortler, R. Grzeszczuk, and M. Cohen R. Szeliski. The
lumigraph. Computer Graphics (SIGGRAPH 96), pages 43–
54, 1996.

[16] V. K. Goyal, J. Kovacevic, R. Arean, and M. Vetterli. Multiple
description transform coding of images.Proc. IEEE Int. Conf.
Image Processing, October 1998.

[17] Yung-Kai Lai, Jin Li, and C.-C. Jay Kuo. A wavelet ap-
proach to compressed image quality measurement.30th An-
nual Asilomar Conference on Signals, Systems, and Comput-
ers, November 1996.

[18] A. Lippman and W.Butera. Coding image sequences for in-
teractive retrieval.ACM: CACM, 32(7):852–860, July 1989.

[19] Peter Litwinowicz and Lance Williams. Animating images
with drawings. InComputer Graphics (SIGGRAPH 94),
pages 409–412, 1994.

[20] S. Mallat. A theory for multiresolution signal decomposition:
The wavelet representation.IEEE PAMI, 11, July 1989.

[21] Steven R. McCanne.Scalable Video Coding and Transmis-
sion for Internet Multicast Video. PhD thesis, University of
California, Berkeley, December 1996.

[22] D. P. Mitchell. Generating antialiased images at low sampling
densities.Computer Graphics (SIGGRAPH’87), 21(4):65–72,
July 1987.

[23] M. T. Orchard, Y. Wang, V. Vaishampayan, and A. R. Reib-
man. Redundancy rate-distortion analysis of multiple descrip-
tion coding using pairwise correlating transforms.Proc. IEEE
Int. Conf. Image Processing, October 1997.

[24] J. OŔourke.Computational Geometry in C. Cambridge Uni-
versity Press, 1993.

[25] Sassan Pejhan, Mischa Schwartz, and Dimitris Anastassiou.
Error control using retransmission schemes in multicast trans-
port protocols for real-time media.IEEE/ACM Transactions
on Networking, 4(3):413–427, June 1996.

[26] M. Podolsky, C. Romer, and S. Mccanne. Simulation of fec-
based error control for packet audio on the internet.INFO-
COM 98, March 1998.

[27] Thomas Porter and Tom Duff. Compositing digital images. In
Hank Christiansen, editor,Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 253–259, July 1984.

[28] Injong Rhee. Error control techniques for interactive low-
bit rate video transmission over the internet. InACM Com-
munication Architectures, Protocols, and Applications (SIG-
COMM) 1998, pages 290–301, Vancouver, B.C., 1998.

[29] S. Servetto, K. Ramchandran, V. Vaishampayan, and
K. Nahrstedt. Multiple description wavelet based image cod-
ing. In the Proceedings of the IEEE International Conference
on Image Processing (ICIP), October 1998.

[30] D. Terzopoulos. Regularization of inverse visual problems in-
volving discontinuities.IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, PAMI-8(4):413–424, July 1986.

[31] S Tsekeridou, I Pitas, and C LeBuhan. An error concealment
scheme for mpeg-2 coded video sequences.ISCAS ’97, pages
1289–1292, June 1997.

[32] P. H. Westerink, J. H. Weber, and J. W. Limpers. Adaptive
channel error protection of subband encoded images.IEEE
Transactions on Communications, 41(3):454–459, March
1993.

27

[33] X. Rex Xu, Andrew C. Myers, Hui Zhang, and Raj Yavatkar.
Resilient multicast support for contininuous-media applica-
tions. In International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSDAV) 1997,
pages 183–193, St. Louis, MO, May 1997.

[34] W. Zeng and B Liu. Geometric structure based directional
filtering for error concealment in image video transmission.
SPIE vol 2601, Wireless Data Transmission, Photonics East
’95, October 1995.

28

Image-Based Visual Hulls

Wojciech Matusik*
Laboratory for Computer Science

Massachusetts Institute of Technology

Chris Buehler*
Laboratory for Computer Science

Massachusetts Institute of Technology

Ramesh Raskar‡

Department of Computer Science
University of North Carolina - Chapel Hill

Steven J. Gortler†

Division of Engineering and Applied Sciences
Harvard University

Leonard McMillan*
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract
In this paper, we describe an efficient image-based approach to
computing and shading visual hulls from silhouette image data.
Our algorithm takes advantage of epipolar geometry and incre-
mental computation to achieve a constant rendering cost per
rendered pixel. It does not suffer from the computation complex-
ity, limited resolution, or quantization artifacts of previous
volumetric approaches. We demonstrate the use of this algorithm
in a real-time virtualized reality application running off a small
number of video streams.
Keywords: Computer Vision, Image-Based Rendering, Con-
structive Solid Geometry, Misc. Rendering Algorithms.

1 Introduction
Visualizing and navigating within virtual environments composed
of both real and synthetic objects has been a long-standing goal of
computer graphics. The term “Virtualized Reality™”, as popular-
ized by Kanade [23], describes a setting where a real-world scene
is “captured” by a collection of cameras and then viewed through
a virtual camera, as if the scene was a synthetic computer graphics
environment. In practice, this goal has been difficult to achieve.
Previous attempts have employed a wide range of computer vision
algorithms to extract an explicit geometric model of the desired
scene.

Unfortunately, many computer vision algorithms (e.g. stereo
vision, optical flow, and shape from shading) are too slow for
real-time use. Consequently, most virtualized reality systems em-
ploy off-line post-processing of acquired video sequences.
Furthermore, many computer vision algorithms make unrealistic
simplifying assumptions (e.g. all surfaces are diffuse) or impose
impractical restrictions (e.g. objects must have sufficient non-
periodic textures) for robust operation. We present a new algo-
rithm for synthesizing virtual renderings of real-world scenes in
real time. Not only is our technique fast, it also makes few sim-
plifying assumptions and has few restrictions.

*(wojciech | cbuehler | mcmillan)@graphics.lcs.mit.edu
†sjg@cs.harvard.edu
‡raskar@cs.unc.edu

Figure 1 - The intersection of silhouette cones defines an approxi-
mate geometric representation of an object called the visual hull. A
visual hull has several desirable properties: it contains the actual
object, and it has consistent silhouettes.

Our algorithm is based on an approximate geometric repre-
sentation of the depicted scene known as the visual hull (see
Figure 1). A visual hull is constructed by using the visible silhou-
ette information from a series of reference images to determine a
conservative shell that progressively encloses the actual object.
Based on the principle of calculatus eliminatus [28], the visual
hull in some sense carves away regions of space where the object
“is not”.

The visual hull representation can be constructed by a series
of 3D constructive solid geometry (CSG) intersections. Previous
robust implementations of this algorithm have used fully enumer-
ated volumetric representations or octrees. These methods
typically have large memory requirements and thus, tend to be
restricted to low-resolution representations.

In this paper, we show that one can efficiently render the ex-
act visual hull without constructing an auxiliary geometric or
volumetric representation. The algorithm we describe is “image
based” in that all steps of the rendering process are computed in
“image space” coordinates of the reference images.

We also use the reference images as textures when shading
the visual hull. To determine reference images that can be used,
we compute which reference cameras have an unoccluded view of
each point on the visual hull. We present an image-based visibility
algorithm based on epipolar geometry and McMillan's occlusion
compatible ordering [18] that allows us to shade the visual hull in
roughly constant time per output pixel.

Using our image-based visual hull (IBVH) algorithm, we
have created a system that processes live video streams and ren-
ders the observed scene from a virtual camera's viewpoint in real
time. The resulting representation can also be combined with
traditional computer graphics objects.

29

goodelle
Appendix C:

2 Background and Previous Work
Kanade’s virtualized reality system [20] [23] [13] is perhaps clos-
est in spirit to the rendering system that we envision. Their initial
implementations have used a collection of cameras in conjunction
with multi-baseline stereo techniques to extract models of dy-
namic scenes. These methods require significant off-line
processing, but they are exploring special-purpose hardware for
this task. Recently, they have begun exploring volume-carving
methods, which are closer to the approach that we use [26] [30].

Pollard’s and Hayes’ [21] immersive video objects allow
rendering of real-time scenes by morphing live video streams to
simulate three-dimensional camera motion. Their representation
also uses silhouettes, but in a different manner. They match sil-
houette edges across pairs of views, and use these
correspondences to compute morphs to novel views. This ap-
proach has some limitations, since silhouette edges are generally
not consistent between views.

Visual Hull. Many researchers have used silhouette infor-
mation to distinguish regions of 3D space where an object is and
is not present [22] [8] [19]. The ultimate result of this carving is a
shape called the object’s visual hull [14]. A visual hull always
contains the object. Moreover, it is an equal or tighter fit than the
object’s convex hull. Our algorithm computes a view-dependent,
sampled version of an object’s visual hull each rendered frame.

Suppose that some original 3D object is viewed from a set of
reference views R. Each reference view r has the silhouette sr with
interior pixels covered by the object. For view r one creates the
cone-like volume vhr defined by all the rays starting at the image's
point of view pr and passing through these interior points on its
image plane. It is guaranteed that the actual object must be con-
tained in vhr. This statement is true for all r; thus, the object must
be contained in the volume vhR= r∈Rvhr. As the size of R goes to
infinity, and includes all possible views, vhR converges to a shape
known as the visual hull vh∞ of the original geometry. The visual
hull is not guaranteed to be the same as the original object since
concave surface regions can never be distinguished using silhou-
ette information alone.

In practice, one must construct approximate visual hulls us-
ing only a finite number of views. Given the set of views R, the
approximation vhR is the best conservative geometric description
that one can achieve based on silhouette information alone (see
Figure 1). If a conservative estimate is not required, then alterna-
tive representations are achievable by fitting higher order surface
approximations to the observed data [2].

Volume Carving. Computing high-resolution visual hulls
can be tricky matter. The intersection of the volumes vhr requires
some form of CSG. If the silhouettes are described with a polygo-
nal mesh, then the CSG can be done using polyhedral CSG, but
this is very hard to do in a robust manner.

A more common method used to convert silhouette contours
into visual hulls is volume carving [22] [8] [29] [19] [5] [27].
This method removes unoccupied regions from an explicit volu-
metric representation. All voxels falling outside of the projected
silhouette cone of a given view are eliminated from the volume.
This process is repeated for each reference image. The resulting
volume is a quantized representation of the visual hull according
to the given volumetric grid. A major advantage of our view-
dependent method is that it minimizes artifacts resulting from this
quantization.

CSG Rendering. A number of algorithms have been de-
veloped for the fast rendering of CSG models, but most are ill
suited for our task. The algorithm described by Rappoport [24],

1

2
3

Figure 2 – Computing the IBVH involves three steps. First, the
desired ray is projected onto a reference image. Next, the intervals
where the projected ray crosses the silhouette are determined.
Finally, these intervals are lifted back onto the desired ray where
they can be intersected with intervals from other reference images.

requires that each solid be first decomposed to a union of convex
primitives. This decomposition can prove expensive for compli-
cated silhouettes. Similarly, the algorithm described in [11]
requires a rendering pass for each layer of depth complexity. Our
method does not require preprocessing the silhouette cones. In
fact, there is no explicit data structure used to represent the sil-
houette volumes other than the reference images.

Using ray tracing, one can render an object defined by a tree
of CSG operations without explicitly computing the resulting
solid [25]. This is done by considering each ray independently
and computing the interval along the ray occupied by each object.
The CSG operations can then be applied in 1D over the sets of
intervals. This approach requires computing a 3D ray-solid inter-
section. In our system, the solids in question are a special class of
cone-like shapes with a constant cross section in projection. This
special form allows us to compute the equivalent of 3D ray inter-
sections in 2D using the reference images.

Image-Based Rendering. Many different image-based
rendering techniques have been proposed in recent years
[3] [4] [15] [6] [12]. One advantage of image-based rendering
techniques is their stunning realism, which is largely derived from
the acquired images they use. However, a common limitation of
these methods is an inability to model dynamic scenes. This is
mainly due to data acquisition difficulties and preprocessing re-
quirements. Our system generates image-based models in real-
time, using the same images to construct the IBHV and to shade
the final rendering.

3 Visual-Hull Computation
Our approach to computing the visual hull has two distinct char-
acteristics: it is computed in the image space of the reference
images and the resulting representation is viewpoint dependent.
The advantage of performing geometric computations in image
space is that it eliminates the resampling and quantization artifacts
that plague volumetric approaches. We limit our sampling to the
pixels of the desired image, resulting in a view-dependent visual-
hull representation. In fact, our IBVH representation is equivalent
to computing exact 3D silhouette cone intersections and rendering
the result with traditional rendering methods.

Our technique for computing the visual hull is analogous to
finding CSG intersections using a ray-casting approach [25].

30

Given a desired view, we compute each viewing ray’s intersection
with the visual hull. Since computing a visual hull involves only
intersection operations, we can perform the CSG calculations in
any order. Furthermore, in the visual hull context, every CSG
primitive is a generalized cone (a projective extrusion of a 2D
image silhouette). Because the cone has a fixed (scaled) cross
section, the 3D ray intersections can be reduced to cheaper 2D ray
intersections. As shown in Figure 2 we perform the following
steps: 1) We project a 3D viewing ray into a reference image. 2)
We perform the intersection of the projected ray with the 2D sil-
houette. These intersections result in a list of intervals along the
ray that are interior to the cone’s cross-section. 3) Each interval is
then lifted back into 3D using a simple projective mapping, and
then intersected with the results of the ray-cone intersections from
other reference images. A naïve algorithm for computing these
IBVH ray intersections follows:

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 for each scanline s in d
 for each pixel p in s
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 intervals int2D = calcIntervals(l2,r.silEdges)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

To analyze the efficiency of this algorithm, let n be the num-
ber of pixels in a scanline. The number of pixels in the image d is
O(n2). Let k be the number of reference images. Then, the above
algorithm has an asymptotic running time O(ikn2), where i is the
time complexity of the calcIntervals routine. If we test for the
intersection of each projected ray with each of the e edges of the
silhouette, the running time of calcIntervals is O(e). Given
that l is the average number of times that a projected ray intersects
the silhouette1, the number of silhouette edges will be O(ln).
Thus, the running time of IBVHisect to compute all of the 2D
intersections for a desired view is O(lkn3).

The performance of this naïve algorithm can be improved by
taking advantage of incremental computations that are enabled by
the epipolar geometry relating the reference and desired images.
These improvements will allow us to reduce the amortized cost of
1D ray intersections to O(l) per desired pixel, resulting in an im-
plementation of IBVHisect that takes O(lkn2).

Given two camera views, a reference view r and a desired
view d, we consider the set of planes that share the line connect-
ing the cameras’ centers. These planes are called epipolar planes.
Each epipolar plane projects to a line in each of the two images,
called an epipolar line. In each image, all such lines intersect at a
common point, called the epipole, which is the projection of one
of the camera's center onto the other camera's view plane [9].

As a scanline of the desired view is traversed, each pixel
projects to an epipolar line segment in r. These line segments
emanate from the epipole edr, the image of d’s center of projection
onto r’s image plane (see Figure 3), and trace out a “pencil” of
epipolar lines in r. The slopes of these epipolar line segments will
either increase or decrease monotonically depending on the direc-
tion of traversal (Green arc in Figure 3). We take advantage of this
monotonicity to compute silhouette intersections for the whole
scanline incrementally.

1 We assume reference images also have O(n2) pixels.

r1
r2

r3

r4

r5

r6

rpr1
rpr2

rpr3
rpr4

rpr5

rpr6

Desired Image

Reference Image

Figure 3 – The pixels of a scanline in the desired image trace out
a pencil of line segments in the reference image. An ordered tra-
versal of the scanline will sweep out these segments such that their
slope about the epipole varies monotonically.

The silhouette contour of each reference view is represented
as a list of edges enclosing the silhouette’s boundary pixels. These
edges are generated using a 2D variant of the marching cubes
approach [16]. Next, we sort the O(nl) contour vertices in in-
creasing order by the slope of the line connecting each vertex to
the epipole. These sorted vertex slopes divide the reference image
domain into O(nl) bins. Bin Bi has an extent spanning between the
slopes of the ith and i+1st vertex in the sorted list. In each bin Bi

we place all edges that are intersected by epipolar lines with a
slope falling within the bin’s extent2. During IBVHisect as we
traverse the pixels along a scanline in the desired view, the pro-
jected corresponding view rays fan across the epipolar pencil in
the reference view with either increasing or decreasing slope.
Concurrently, we step through the list of bins. The appropriate bin
for each epipolar line is found and it is intersected with the edges
in that bin. This procedure is analogous to merging two sorted
lists, which can be done in a time proportional to the length of the
lists (O(nl) in our case).

For each scanline in the desired image we evaluate n viewing
rays. For each viewing ray we compute its intersection with edges
in a single bin. Each bin contains on average O(l) silhouette
edges. Thus, this step takes O(l) time per ray. Simultaneously we
traverse the sorted set of O(nl) bins as we traverse the scanline.
Therefore, one scanline is computed in O(nl) time. Over n scanli-
nes of the desired image, and over k reference images, this gives a
running time of O(lkn2). Pseudocode for the improved algorithm
follows.

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 bins b = constructBins(r.caminfo, r.silEdges, d.caminfo)
 for each scanline s in d
 incDec order = traversalOrder(r.caminfo,d.caminfo,s)
 resetBinPositon(b)
 for each pixel p in s according to order
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 slope m = ComputeSlope(l2,r.caminfo,d.caminfo)
 updateBinPosition(b,m)
 intervals int2D = calcIntervals(l2,b.currentbin)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

2 Sorting the contour vertices takes O(nl log(nl)) and binning takes O(nl2).

Sorting and binning over k reference views takes O(knl log(nl)) and
O(knl2) correspondingly. In our setting, l << n so we view this preproc-
essing stage as negligible.

31

It is tempting to apply further optimizations to take greater
advantage of epipolar constraints. In particular, one might con-
sider rectifying each reference image with the desired image prior
to the ray-silhouette intersections. This would eliminate the need
to sort, bin, and traverse the silhouette edge lists. However, a call
to liftInterval would still be required for each pixel, giving
the same asymptotic performance as the algorithm presented. The
disadvantage of rectification is the artifacts introduced by the two
resampling stages that it requires. The first resampling is applied
to the reference silhouette to map it to the rectified frame. The
second is needed to unrectify the computed intervals of the de-
sired view. In the typical stereo case, the artifacts of rectification
are minimal because of the closeness of the cameras and the
similarity of their pose. But, when computing visual hulls the
reference cameras are positioned more freely. In fact, it is not
unreasonable for the epipole of a reference camera to fall within
the field of view of the desired camera. In such a configuration,
rectification is degenerate.

4 Visual-Hull Shading
The IBVH is shaded using the reference images as textures. In
order to capture as many view-dependent effects as possible a
view-dependent texturing strategy is used. At each pixel, the ref-
erence-image textures are ranked from "best" to "worst" according
to the angle between the desired viewing ray and rays to each of
the reference images from the closest visual hull point along the
desired ray. We prefer those reference views with the smallest
angle [7]. However, we must avoid texturing surface points with
an image whose line-of-sight is blocked by some other point on
the visual hull, regardless of how well aligned that view might be
to the desired line-of-sight. Therefore, visibility must be consid-
ered during the shading process.

When the visibility of an object is determined using its visual
hull instead of its actual geometry, the resulting test is conserva-
tive– erring on the side of declaring potentially visible points as
non-visible. We compute visibility using the visual hull, VHR, as
determined by IBVHisect. This visual hull is represented as inter-
vals along rays of the desired image d. Pseudocode for our
shading algorithm is given below.

IBVHshade(intervalImage &d, refImList R){
 for each pixel p in d do
 p.best = BIGNUM
 for each referenceImage r in R do
 for each pixel p in d do
 ray3D ry3 = compute3Dray(p,d.camInfo)
 point3 pt3 = front(p.intervals,ry3)
 double s = angleSimilarity(pt3,ry3,r.camInfo)
 if isVisible(pt3,r,d)
 if (s < p.best)
 point2 pt2 = project(pt3,r.camInfo)
 p.color = sample_color(pt2,r)
 p.best = s
}

The front procedure finds the front most geometric point of the
IBVH seen along the ray. The IBVHshade algorithm has time
complexity O(vkn2), where v is the cost for computing visibility of
a pixel.

Once more we can take advantage of the epipolar geometry
in order to incrementally determine the visibility of points on the
visual hull. This reduces the amortized cost of computing visibil-
ity to O(l) per desired pixel, thus giving an implementation of
IBVHshade that takes O(lkn2).

Consider the visibility problem in flatland as shown in
Figure 4. For a pixel p, we wish to determine if the front-most
point on the visual hull is occluded with respect to a particular
reference image by any other pixel interval in d.

Figure 4 – In order to compute the visibility of an IBVH sample with
respect to a given reference image, a series of IBVH intervals are
projected back onto the reference image in an occlusion-
compatible order. The front-most point of the interval is visible if it
lies outside of the unions of all preceding intervals.

Efficient calculation can proceed as follows. For each refer-
ence view r, we traverse the desired-view pixels in front-to-back
order with respect to r (left-to-right in Figure 4). During traversal,
we accumulate coverage intervals by projecting the IBVH pixel
intervals into the reference view, and forming their union. For
each front most point, pt3, we check to see if its projection in the
reference view is already covered by the coverage intervals com-
puted thus far. If it is covered, then pt3 is occluded from r by the
IBVH. Otherwise, pt3 is not occluded from r by either the IBVH
or the actual (unknown) geometry.

visibility2D(intervalFlatlandImage &d, referenceImage r){
 intervals coverage = <empty>
 for each pixel p in d do \\front to back in r
 ray2D ry2 = compute2Dray(p,d.camInfo)
 point2 pt2 = front(p.intervals,ry2);
 point1D p1 = project(pt2,r.camInfo)
 if contained(p1,coverage)
 p.visible[r] = false
 else
 p.visible[r] = true
 intervals tmp =
 prjctIntrvls(p.intervals,ry2,r.camInfo)
 coverage = coverage UNION tmp
}

This algorithm runs in O(nl), since each pixel is visited once, and
containment test and unions can be computed in O(l) time.

Figure 5 – Ideally, the visibility of points in 3D could be computed
by applying the 2D algorithm along epipolar planes.

In the continuous case, 3D visibility calculations can be re-
duced to a set of 2D calculations within epipolar planes (Figure
5), since all visibility interactions occur within such planes. How-
ever, the extension of the discrete 2D algorithm to a complete
discrete 3D solution is not trivial, as most of the discrete pixels in
our images do not exactly share epipolar planes. Consequently,
one must be careful in implementing conservative 3D visibility.

32

First, we consider each of the intervals stored in d as a solid
frustum with square cross section. To determine visibility of a
(square) pixel p correctly we consider Sp, the set of all possible
epipolar planes which touch p. There are at least two possible
definitions for whether p is visible: (1) p is visible along all planes
in Sp , (2) p is visible along any plane in Sp. Clearly the first defi-
nition results in more pixels that are labeled not visible, therefore,
it is better suited when using a large number of reference images.
With a small number of reference images, the second definition is
preferred. Implementing efficient exact algorithms for these visi-
bility definitions is difficult, therefore, we use conservative
algorithms; if the pixel is truly invisible we never label it as visi-
ble. However, the algorithms could label some pixel as invisible
though it is in fact visible.

An algorithm that conservatively computes visibility ac-
cording to the first definition is performed as follows. We define
an epipolar wedge starting from the epipole erd in the desired view
extending out to a one pixel-width interval on the image bound-
ary. Depending on the relative camera views, we traverse the
wedge either toward or away from the epipole [17]. For each pixel
in this wedge, we compute visibility with respect to the pixels
traversed earlier in the wedge using the 2D visibility algorithm. If
a pixel is computed as visible then no geometry within the wedge
could have occluded it in the reference view. We use a set of
wedges whose union covers the whole image. A pixel may be
touched by more than one wedge, in these cases its final visibility
is computed as the AND of the results obtained from each wedge.

The algorithm for the second visibility definition works as
follows. We do not consider all possible epipolar lines that touch
pixel p but only some subset of them such that at least one line
touches each pixel. One such subset is all the epipolar lines that
pass through the centers of the image boundary pixels. This par-
ticular subset completely covers all the pixels in the desired
image; denser subsets can also be chosen. The algorithm com-
putes visibility2D for all epipolar lines in the subset.
Visibility for a pixel might be computed more than once (e.g., the
pixels near the epipole are traversed more often). We OR all ob-
tained visibility results. Since we compute visibility2D for up
to 4n epipolar lines in k reference images the total time complex-
ity of this algorithm is O(lkn2). In our real-time system we use
small number of reference images (typically four). Thus, we use
the algorithm for the second definition of visibility.

The total time complexity of our IBVH algorithms is O(lkn2),
which allows for efficient rendering of IBVH objects. These algo-
rithms are well suited to distributed and parallel implementations.
We have demonstrated this efficiency with a system that computes
IBVHs in real time from live video sequences.

Figure 6 – Four segmented reference images from our system.

5 System Implementation
Our system uses four calibrated Sony DFW500 FireWire video
cameras. We distribute the computation across five computers,
four that process video and one that assembles the IBVH (see
Figure 6). Each camera is attached to a 600 MHz desktop PC that
captures the video frames and performs the following processing

steps. First, it corrects for radial lens distortion using a lookup
table. Then it segments out the foreground object using back-
ground-subtraction [1] [10]. Finally, the silhouette and texture
information are compressed and sent over a 100Mb/s network to a
central server for IBVH processing.

Our server is a quad-processor 550 MHz PC. We interleave
the incoming frame information between the 4 processors to in-
crease throughput. The server runs the IBVH intersection and
shading algorithms. The resulting IBVH objects can be depth-
buffer composited with an OpenGL background to produce a full
scene. In the examples shown, a model of our graphics lab made
with the Canoma modeling system was used as a background.

Figure 7 – A plot of the execution times for each step of the IBVH
rendering algorithm on a single CPU. A typical IBVH might cover
approximately 8000 pixels in a 640 × 480 image and it would exe-
cute at greater than 8 frames per second on our 4 CPU machine.

In Figure 7, the performances of the different stages in the
IBVH algorithm are given. For these tests, 4 input images with
resolutions of 256 × 256 were used. The average number of times
that a projected ray crosses a silhouette is 6.5. Foreground seg-
mentation (done on client) takes about 85 ms. We adjusted the
field of view of the desired camera, to vary the number of pixels
occupied by the object. This graph demonstrates the linear growth
of our algorithm with respect to the number of output pixels.

6 Conclusions and Future Work
We have described a new image-based visual-hull rendering algo-
rithm and a real-time system that uses it. The algorithm is efficient
from both theoretical and practical standpoints, and the resulting
system delivers promising results.

The choice of the visual hull for representing scene elements
has some limitations. In general, the visual hull of an object does
not match the object’s exact geometry. In particular, it cannot
represent concave surface regions. This shortcoming is often con-
sidered fatal when an accurate geometric model is the ultimate
goal. In our applications, the visual hull is used largely as an im-
poster surface onto which textures are mapped. As such, the visual
hull provides a useful model whose combination of accurate sil-
houettes and textures provides surprisingly effective renderings
that are difficult to distinguish from a more exact model. Our
system also requires accurate segmentations of each image into
foreground and background elements. Methods for accomplishing
such segmentations include chromakeying and image differenc-
ing. These techniques are subject to variations in cameras,
lighting, and background materials.

We plan to investigate techniques for blending between tex-
tures to produce smoother transitions. Although we get impressive
results using just 4 cameras, we plan to scale our system up to
larger numbers of cameras. Much of the algorithm parallelizes in a
straightforward manner. With k computers, we expect to achieve
O(n2 l log k) time using a binary-tree based structure.

33

7 Acknowledgements
We would like to thank Kari Anne Kjølaas, Annie Choi, Tom
Buehler, and Ramy Sadek for their help with this project. We also
thank DARPA and Intel for supporting this research effort. NSF
Infrastructure and NSF CAREER grants provided further aid.

8 References
[1] Bichsel, M. “Segmenting Simply Connected Moving Objects in a

Static Scene.” IEEE PAMI 16, 11 (November 1994), 1138-1142.
[2] Boyer, E., and M. Berger. “3D Surface Reconstruction Using Oc-

cluding Contours.” IJCV 22, 3 (1997), 219-233.
[3] Chen, S. E. and L. Williams. “View Interpolation for Image Synthe-

sis.” SIGGRAPH 93, 279-288.
[4] Chen, S. E. “Quicktime VR – An Image-Based Approach to Virtual

Environment Navigation.” SIGGRAPH 95, 29-38.
[5] Curless, B., and M. Levoy. “A Volumetric Method for Building

Complex Models from Range Images.” SIGGRAPH 96, 303-312.
[6] Debevec, P., C. Taylor, and J. Malik, “Modeling and Rendering

Architecture from Photographs.” SIGGRAPH 96, 11-20.
[7] Debevec, P.E., Y. Yu, and G. D. Borshukov, “Efficient View-

Dependent Image-based Rendering with Projective Texture Map-
ping.” Proc. of EGRW 1998 (June 1998).

[8] Debevec, P. Modeling and Rendering Architecture from Photo-
graphs. Ph.D. Thesis, University of California at Berkeley,
Computer Science Division, Berkeley, CA, 1996.

[9] Faugeras, O. Three-dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[10] Friedman, N. and S. Russel. “Image Segmentation in Video Se-
quences.” Proc 13th Conference on Uncertainty in Artifical
Intelligence (1997).

[11] Goldfeather, J., J. Hultquist, and H. Fuchs. “Fast Constructive Solid
Geometry Display in the Pixel-Powers Graphics System.” SIG-
GRAPH 86, 107-116.

[12] Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen. “The
Lumigraph.” SIGGRAPH 96, 43-54.

[13] Kanade, T., P. W. Rander, and P. J. Narayanan. “Virtualized Reality:
Constructing Virtual Worlds from Real Scenes.” IEEE Multimedia
4, 1 (March 1997), 34-47.

[14] Laurentini, A. “The Visual Hull Concept for Silhouette Based Image
Understanding.” IEEE PAMI 16,2 (1994), 150-162.

[15] Levoy, M. and P. Hanrahan. “Light Field Rendering.” SIGGRAPH
96, 31-42.

[16] Lorensen, W.E., and H. E. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.” SIGGRAPH 87, 163-169.

[17] McMillan, L., and G. Bishop. “Plenoptic Modeling: An Image-
Based Rendering System.” SIGGRAPH 95, 39-46.

[18] McMillan, L. An Image-Based Approach to Three-Dimensional
Computer Graphics, Ph.D. Thesis, University of North Carolina at
Chapel Hill, Dept. of Computer Science, 1997.

[19] Moezzi, S., D.Y. Kuramura, and R. Jain. “Reality Modeling and
Visualization from Multiple Video Sequences.” IEEE CG&A 16, 6
(November 1996), 58-63.

[20] Narayanan, P., P. Rander, and T. Kanade. “Constructing Virtual
Worlds using Dense Stereo.” Proc. ICCV 1998, 3-10.

[21] Pollard, S. and S. Hayes. “View Synthesis by Edge Transfer with
Applications to the Generation of Immersive Video Objects.” Proc.
of VRST, November 1998, 91-98.

[22] Potmesil, M. “Generating Octree Models of 3D Objects from their
Silhouettes in a Sequence of Images.” CVGIP 40 (1987), 1-29.

[23] Rander, P. W., P. J. Narayanan and T. Kanade, “Virtualized Reality:
Constructing Time Varying Virtual Worlds from Real World
Events.” Proc. IEEE Visualization 1997, 277-552.

[24] Rappoport, A., and S. Spitz. “Interactive Boolean Operations for
Conceptual Design of 3D solids.” SIGGRAPH 97, 269-278.

[25] Roth, S. D. “Ray Casting for Modeling Solids.” Computer Graphics
and Image Processing, 18 (February 1982), 109-144.

[26] Saito, H. and T. Kanade. “Shape Reconstruction in Projective Grid
Space from a Large Number of Images.” Proc. of CVPR, (1999).

[27] Seitz, S. and C. R. Dyer. “Photorealistic Scene Reconstruction by
Voxel Coloring.” Proc. of CVPR (1997), 1067-1073.

[28] Seuss, D. “The Cat in the Hat,” CBS Television Special (1971).
[29] Szeliski, R. “Rapid Octree Construction from Image Sequences.”

CVGIP: Image Understanding 58, 1 (July 1993), 23-32.
[30] Vedula, S., P. Rander, H. Saito, and T. Kanade. “Modeling, Com-

bining, and Rendering Dynamic Real-World Events from Image
Sequences.” Proc. 4th Intl. Conf. on Virtual Systems and Multimedia
(Nov 1998).

Figure 8 - Example IBVH images. The upper images show depth maps of the computed visual hulls. The lower images show shaded ren-
derings from the same viewpoint. The hull segment connecting the two legs results from a segmentation error caused by a shadow.

34

Dynamically Reparameterized Light Fields 1
MIT LCS Computer Graphics Group

Dynamically Reparameterized Light Fields
Aaron Isaksen

MIT LCS Computer Graphics Group
aisaksen@graphics.lcs.mit.edu

http://graphics.lcs.mit.edu/~aisaksen

Leonard McMillan
MIT LCS Computer Graphics Group

mcmillan@graphics.lcs.mit.edu
http://graphics.lcs.mit.edu/~mcmillan

Steven J. Gortler
Harvard University
sjg@cs.harvard.edu

http://www.cs.harvard.edu/~sjg

Abstract
An exciting new area in computer graphics is the synthesis of
novel images with photographic effect from an initial database
of reference images. This is the primary theme of image-
based rendering algorithms. This research extends the light
field and lumigraph image-based rendering methods and
greatly extends their utility, especially in scenes with much
depth variation. First, we have added the ability to vary the
apparent focus within a light field using intuitive camera-like
controls such as a variable aperture and focus ring. As with
lumigraphs, we allow for more general and flexible focal
surfaces than a typical focal plane. However, this
parameterization works independently of scene geometry; we
do not need to recover actual or approximate geometry of the
scene for focusing. In addition, we present a method for using
multiple focal surfaces in a single image rendering process.

Introduction
The light field [Levoy96] and lumigraph [Gortler96] rendering
methods use similar four-dimensional data structures for
representing a half-space of rays through a volume of space.
We will refer to this data structure as a ray database. Novel
images are synthesized from this database by querying it for
each ray needed to construct a desired view. The set of
viewpoints that can be generated are restricted to those within
an empty region of space lying outside of the convex hull of
objects in the scene that are composed entirely of rays from
the selected half-space. Several ray databases can be used to
represent a scene, and desired images may combine rays
queried from different databases. A pair of planes is typically
used to parameterize a ray database, although other
parameterizations have been suggested [Camahort96].

A continuous representation of a ray database would be
sufficient for generating any desired viewpoint under the
previously described viewing restrictions. However,
continuous databases are impractical or unattainable for all but
the most trivial cases. In practice, we must work with a
discretely sampled ray databases. As with any sampled
representation the issues of choosing an appropriate initial
sampling density as well as defining methods for
reconstructing continuous representations from the given
sample set are crucial factors in representing the underlying
model. A previous motivation for selecting a new
parameterization for the ray database was to facilitate better or

more uniform sampling. Improving the uniformity of
sampling density helps find an adequate sample rate to avoid
aliasing artifacts. These artifacts due to an initial
undersampling cannot be removed though a subsequent
process unless additional information or constraints are
provided.

The choice of a ray database parameterization also affects
the choice of reconstruction methods that can be used in
synthesizing desired views. Thus, even when supplied with an
adequately sampled dataset, it is frequently the case that a
non-ideal reconstruction filter will introduce artifacts into the
result, whereas a better reconstruction filter on the same
dataset might have generated a more correct result. This
process of introducing artifacts in the reconstruction process is
often called postaliasing [Mitchell88]. Postaliasing artifacts
include excessive high-frequency leakage, sometimes called
ringing, and excessive pass-band attenuation, or blurring. The
standard planar parameterizations of ray databases have a
substantial impact on the choice of reconstruction filters. Here,
we present an alternative parameterization that allows for a
more flexible choice of reconstruction filters.

To date, most light fields are constructed for object-
centered, or outside-looking-in, environments rather than
viewer-centered, or inside-looking-out environments. This is
not entirely coincidental: the original two-plane light field can
best represent points that are located near the exit plane of the
ray database. Objects located a small distance from this exit
plane will appear out of focus (either blurred or ghosted,
depending on the extent of aperture filtering). Thus, an object-
centered model is better suited, as the distance the object lies
from the exit plane is well represented by a plane.

We would like to represent inside-looking-out light fields
with a wide variations in depth. This requires a more flexible
parameterization of the ray database.

In the sections that follow, we present an extension of the
light field parameterization that introduces the notion of a
focal surface. Then, we discuss how the treatment of a light
field as a discrete synthetic aperture camera will provide
dynamic variations of depth of field. Next, we explain how
moving and orienting the focal surface will affect the images
created using this ray database. We then present the idea of
using multiple focal planes, how to create them, and how to
use them when rendering. Finally, we present ideas on how
one would optimally make these multiple focal planes.

35

goodelle
Appendix D:

Dynamically Reparameterized Light Fields 2
MIT LCS Computer Graphics Group

Focal-Plane Abstraction

Overview

Our parameterization of ray databases is analogous to a
two-dimensional array of pinhole cameras treated as a single
optical system with a synthetic aperture. Each constituent
pinhole camera captures an image in clear focus, and this
camera array acts as a discrete aperture in the image formation
process. Because we have a discrete, finite aperture, some
amount of depth of field defocusing will be present in our
renderings. However, by using an arbitrary plane of focus, we
can establish correspondences between the rays from different
pinhole cameras. That is, we can control which items we want
to be in focus. This is essentially the approach used to
simulate depth-of-field effects in ray-traced images [Cook84].

Mathematical formulation

In the standard two-plane ray database parameterization
there is an entrance plane, with parameters (s, t) and an exit
plane with parameters (u, v), where each ray is uniquely
determined by the 4-tuple (s, t, u, v), as illustrated in Figure 1.
It is often instructive to consider and/or interpret subspaces of
such a ray database [Gu96]. A two dimensional subspace
given by fixed s and t values resembles an image, whereas
fixed u and v values give a hypothetical radiance function.
Fixing t and v gives rise to an epipolar plane image, or EPI
[Bolles87].

Figure 1: In the standard light field parameterization, a ray is
referenced by its intersections with an entrance plane and an exit
plane.

Our new parameterization is best described in terms of
three 2-D surfaces, which are shown in Figure 2 below. Our
camera surface, described in terms of two parameters s and t,
is identical in function to the entrance plane of the standard
parameterization. Our image surfaces describe a discrete set of
rays from a given point, (s,t), on the camera surface and has
the form (us,t, vs,t). The elements of the ray database are
accessed via a four-tuple (s, t, us,t, vs,t,). Our focal surface is
described in terms of two parameters, (uF, vF), that are
independent of all others. Our parameterization also requires a
mapping),(),,,(: ,, tstsFFF vuvutsM → ; this maps from focal

surface parameters to image surface parameters given a
specific camera surface coordinate. That is, this mapping tells
us which ray (s,t,us,t,vs,t,) in the ray database is the same as the
ray),,,(FF vuts .

Figure 2: Our new parameterization has added a focal surface.

When querying a discrete ray database, we wish to find the
ray r̂ , a ray that has been recorded in the ray database, that
best approximates a ray r. Given r and a focal surface F, one
calculates the ray’s intersections with the camera surface and
focal surface to get),,,(FF vuts . Then,),,,(FF vuts is

quantized to),,ˆ,ˆ(FF vuts , because the camera surface is

sampled discretly, not continuously. This 4-tuple is passed
throught the mapping),(),,ˆ,ˆ(: ˆ,ˆˆ,ˆ tstsFFF vuvutsM → to obtain

the nearest ray r̂ in the ray database which passes through
)ˆ,ˆ(ts . By varying the focal surface and the focal surface

mapping, different rays r̂ will be returned for a given ray r.
The key difference between our ray-database query

formulation and that used by the light field and the lumigraph
is the identification of independent image and focal surfaces.
In the case of a standard two-plane parameterization the
mapping function from (uF,vF) to (us,t,vs,t) is an identity.
Therefore, every point on the camera surface shares a common
image surface, and the image surface is coincident with the
focal surface.

However, we have separated these surfaces, and the
relationship between them is determined by the focal-plane-to-
image-plane mapping function. This mapping can be modified
dynamically, and these alterations do not effect the
organization of the underlying ray database. Thus, we defer
the selection of the focal surface until image synthesis time,
and make the specification of this surface available to the user.

The addition of a focal surface abstraction has only a
minor impact on the image synthesis process. Assume that the
center-of-projection of the desired image lies at the origin. In
the case where the camera, image, and focal surfaces are
defined as planes the mapping from a desired ray to a database
query can be structured as a pair of projective mappings.

camera surface focal surface

image surfaces

r (uF,vF)

(s,t)

),,ˆ,ˆ(ˆ,ˆˆ,ˆ tsts vuts

),(ts

entrance plane

exit plane

),(vu

r

36

Dynamically Reparameterized Light Fields 3
MIT LCS Computer Graphics Group

d

w

wv

wu

d

r

rt

rs

ts FI

C

ˆ,ˆ=

=

In these equations, d is the direction of the desired ray.
The 3 by 3 matrix C gives the intersection of the ray with the
camera plane in terms of s and t. Likewise, the matrix F gives
the (uF,vF) intersection of the ray with the focal plane. The 3
by 3 matrix Is,t maps focal-plane coordinates into pixel
coordinates of the specified camera,)ˆ,ˆ(ts . These mappings

are computed for each image synthesized. In light fields and
lumigraphs, all points on the camera plane share a common
image plane that is also the focal plane. Therefore, only two
mapping functions are required, one for the entrance plane and
one for the exit plane. In our parameterization the focal
surface is defined dynamically. Thus, F is determined by the

user. The composite map, FI ts ˆ,ˆ , must be determined for

every discrete position on the camera plane where an image
plane is specified, for example at 256 points. This quantity can
be computed lazily, but in any case it is only a small overhead
compared to the ray queries.

Discrete Synthetic Aperture Camera

When quantizing)ˆ,ˆ(),(tsts → , the nearest ray r̂ is

constrained to pass through)ˆ,ˆ(ts . Clearly, except in the case

where)ˆ,ˆ(),(tsts = , the ray r̂ is not the same as r, and errors

in the output image are apparent. Evaluating MF only once for
each ray r leads to noticeable discontinuities in the output
image, as the quantization)ˆ,ˆ(),(tsts → suddenly jumps to a

new location on the camera surface, even when),(ts may

only change a small amount (see figure 3 below).
To reduce these discontinuities, one can ask for the four

rays from the four nearest)ˆ,ˆ(ts samples. Then one can

interpolate between these rays to find a better approximation
than any one of these rays alone. In the original light-field
paper, this was referred to as st-interpolation. However, a
more general approach would be to take a linear combination
of a set of nearby rays. This is analogous to a camera
system’s point-spread function. Unfortunately, this trades
discontinuities for focusing problems, as we have now added a
finite aperture and therefore a limited depth of field (related to
the distances between the samples on the camera surface).
Nevertheless, we are used to dealing with real world camera
systems which exhibit these depth of field problems: we
accept them, and even derive artistic value from them.

However, we are not accepting of discontinuities in an image,
and the tradeoff is a useful one.

Figure 3: Although the image is clearly focused, using only a
single nearest neighbor ray creates noticeable discontinuities.

Variable apertures

Depth of Field
One can render depth of field effects by blending a larger set
of approximate rays. If MF is evaluated for all cameras)ˆ,ˆ(ts

within a given radial distance from),(ts , the aperture radius

of the synthetic camera is increased. In Figure 4, 7 different
cameras will be used for a single input ray. Whereas one can
only decrease the aperture radius by sampling the camera
surface more densely, one can increase the aperture at run-
time by averaging more rays together (i.e. changing the radius
of the gray circle in Figure 4).

Figure 4: By including rays from all cameras within a radius of
the actual camera surface intersection, we can increase the
aperture of our synthetic camera.

By combining rays from cameras farther away from),(ts ,

only objects that are near the focal surface will be in focus.
By definition, the set of nearest rays obtained through MF for a

r

(s,t)

)ˆ,ˆ(11 ts)ˆ,ˆ(22 ts

37

Dynamically Reparameterized Light Fields 4
MIT LCS Computer Graphics Group

given),(FF vu will intersect at),(FF vu , regardless of)ˆ,ˆ(ts .

That is, these rays are ‘looking’ at the point),(FF vu on the

focal surface F. If there was an object at that location when
the ray database was captured, the rays will agree on the color
of that surface (up to view dependent variations). In the left
side of Figure 5, r1, r2, r3, and r4 agree. However, as the actual
object gets farther from the focal surface, the agreement of the
rays diverge, as in the right side of Figure 5. By increasing the
aperture radius, more rays will be averaged, and these colors
will diverge faster. Thus, we have a control over depth of field
that is intuitive to photographers: the f-stop on a camera is
inversely proportional to aperture radius.

Figure 5: When the focal surface is near the object we are
looking at, the rays agree and the object appears to be in focus
(left). If the object is further from the focal surface (right), then
the rays do not agree, and the object will appear out of focus.

Seeing through Objects
Other algorithms could be used to create effects not available
to photographers. In Figure 6, we used an aperture that
included every camera in our data set. If that were taken with
a single real camera, the aperture would be about the size of a
3-story building! Because our depth of field is so narrow, we
can “look through” objects.

Figure 6: By making the aperture very large, we are able to look
through objects. In this case, there is a tree and island occluding
the hills where the slight haze appears. Figures 8,9, and 10 are
the same scene with a smaller aperture; the tree is visible.

Varying focus

Though we have shown a way to change the size of the
aperture, this could have been done with the standard light
field parameterization. We will now show what can be
accomplished with a parameterization that allows one to
dynamically control what is in focus.

Moving the Focal Surface
A photographer using a camera can not only change the depth
of field, but he can change what is in focus. Using our
parameterization, one changes the focal surface in order to
change what appears in focus. As before, a ray r, a camera
surface, and a focal surface F intersect at),,,(FF vuts . This

4-tuple is then quantized and passed through a mapping
),(),,ˆ,ˆ(: ˆ,ˆˆ,ˆ tstsFFF vuvutsM → to obtain the nearest ray r̂ in

the ray database.
When the focal surface is changed to F’, the same ray r

now intersects the camera and focal surfaces at the new
coordinates),,ˆ,ˆ(’’ FF vuts . Thus, by dynamically changing the

focal surface, we are dynamically changing which ray r̂ in the
ray database is ‘nearest’ to the ray r. When we change the
focal surface from F to F’, we are changing from r̂ , a ray that
passes through),(FF vu , to r̂ , a ray that passes through

),(’’ FF vu (see Figure 7). Since objects nearest to the focal

surface intersection will be in focus when using a finite
aperture, we have added a variable focus into the light field
parameterization.

Figure 7: By changing the focal surface, we can control which
ray in the ray database best approximates a given ray r.

Without the focal surface mapping, the light field always
returned the same ray r̂ for an input ray r. Since this
deficency is tied into the storage of the ray database, light
fields and lumigraphs have a fixed focus. Whereas the
standard light fields implementations could render either
Figure 8 or Figure 9, it could not do both without rerendering
the database, clearly not a dynamic operation. Depth-

),(’’ FF vu

),(FF vu

F F’

r

)ˆ,ˆ(ts

r̂

’r̂

r1

r2

r3

r4

F

r1

r2

r3

r4

F

38

Dynamically Reparameterized Light Fields 5
MIT LCS Computer Graphics Group

corrected lumigraphs would allow a dynamic focal surface,
but only a single one.

Freely oriented focal surfaces
Since the focal surface determines which regions of space in
the light field will be in focus, moving the focal surface allows
the user to focus on different parts of the scene. For example,
when we use a plane parallel to the image plane as a focal
surface, it makes it easy to see what lies at a given depth in the
scene. In figure 8, we have chosen to make the tree in focus,
while figure 9 focuses on the hills behind the island. Moving
the focal plane only changes 1) the mapping function MF and
2) where the ray r intersects with F at),(FF vu . This is a

simple change that does not affect the storage of the ray
database.

Figure 8: A focal plane has been placed through the tree.

Figure 9: The same scene as Figure 8, but with the focal plane
passing through the hills behind the island.

We do not need to keep the focal surface parallel to the
image plane. If we orient the plane such that it passes through
various objects in the scene, we can constrain these objects to
be in focus. In Figure 10, we pass the focal surface through
the front rock, part of the tree, and the rock at the left edge of

the island. This non-parallel focal plane is available to
photographers that use a bellows on their camera, but bellows
are not common equipment and can be difficult to align with
the optical system. And, of course the focus cannot be
dynamically changed after film has been exposed. Since
rotating the focal plane again simply causes a change of MF

and a different),(FF vu for a ray r, it no more difficult to

arbitrarily orient a focal plane than it is to move one.

Figure 10: We have placed a focal plane that is not parallel to the
image plane. In this case, the plane passes through part of the
tree, the front rock, and the leftmost rock on the island. The
plane of focus can be seen intersecting with the water in a line.

Non-planar focal surfaces
Clearly, these example scenes can not be entirely focused with
a single plane. Of course, the focal surfaces do not have to be
planar. One could create a focal surface out of a
parameterized surface patch that passes through key points in
a scene. Or, one could even use a depth map of the scene as a
focal surface, insuring that all visible surfaces were in focus.
This would analogous to depth-corrected lumigraphs, where a
proxy surface helps focus the representation But, in reality,
these depth maps would be hard and/or expensive to obtain
with simple hardware, and would likely only be applicable to
synthetic ray databases.

Multiple Focal Surfaces
In general, we would like to have more than just the points
near a single surface in clear focus. One solution is to use
multiple focal surface, something not available to real
cameras. In a real lens system, only one continuous region is
in focus at one time. However, since we are not confined by
physical optics, we can have two or more distinct regions that
are in focus. For example, in Figure 11, the red bull in front
and the monitors in back are in focus, yet the objects in
between, such as the yellow fish and the blue animal, are out
of focus. Using a real camera, this can be done by first taking
a set of pictures with different planes of focus, and then taking
the best parts of each image and compositing them together
[Haeberli94].

39

Dynamically Reparameterized Light Fields 6
MIT LCS Computer Graphics Group

Figure 11: Using two focal surfaces allows us to make the front
and back objects in focus, while those in the middle are blurry.

Since a ray r will intersect each focal surface, some
scoring scheme is needed to pick which focal surface will be
used. We would like to pick the focal surface which will
make the picture look most focused, which means we need to
pick the focal surface which is closest to the actual object
being looked at. We can augment each focal surface with
some scoring),(FF vuσ , which is the likelihood a visible

object is near),(FF vu . Then, we calculate σ for each focal

surface, and we can pick the focal point with the best score
σ . In Figure 12, we would like 2σ to have the best score, for

it is closest to the object. Note that an individual score
),(FF vuσ is independent of the view direction; however, the

set of scores compared for a particular ray r is dependent on
the view direction. Therefore, although our scoring data can
be developed with out view dependence, we can still extract
view dependent information from it.

Figure 12: To find the best focal plane, we calculate a score at
each intersection and take the focal plane with the best score. If
the scoring system is good, the best score will be the one nearest
the surface we are looking at.

If we are given the light-fields but no knowledge about the
geometry of the scene, we must create these scores from
information in the images alone. We would like to avoid
computer vision techniques that involve deriving
correspondences to discover the actual geometry of the scene,
as vision algorithms may deal with ambiguities that are not
relevant to generating synthetic images. For example, flat
regions without texture can be troublesome to a vision system,
and can make it hard to find an exact depth. However, when
making images from a light field, picking the wrong depth
near the same flat region would not affect us, because the
region would still look in focus. Therefore, we would like a
scoring system that allows us to take advantage of this extra
freedom. And, because we only have the original images as
input, we need a scoring system that can be easily created
from these input images.

So, we have chosen to look for locations on the focal
surfaces that approximate radiance functions. Whereas we
have usually thought of the light-fields as looking in at
objects, we can also use them to generate radiance functions.
The collection of rays in the ray database that intersect at

),(FF vu is the discretized radiance function of the point

),(FF vu . If the point lies on an object and is not occluded by

other objects, the radiance function will be smooth, as in the
left side of Figure 13 below. However, if the point is not near
an actual object, then the radiance function will not be smooth,
as in the right side of Figure 13.

To measure smoothness, we look for a lack of high
frequencies in the radiance function. High frequencies in a
radiance function identify 1) a point on a extremely specular
surface, 2) an occlusions in the space between a point and a
camera, or 3) a point in empty space. Thus, if we identify the
regions where the there are no high frequencies in the radiance
function, we know the point must be near a surface. Because
of their high frequency content, we may miss areas that are
actually on a surface but have an occluder in the way.

Figure 13: Creating a radiance function from a light field. If the
radiance function is near an object, then the function will be
smooth. If the radiance function is not near an object, it will
vary greatly.

Because calculating the radiance function is a slow
process, we create the scores for discrete points on each focal
surface as a preprocessing step. This allows us to use
expensive algorithms to setup the scores on our focal surfaces.
Then, when we are rendering, we only need to recall the

σ1

σ2

σ4

σ3

F1
F2 F3

F4
r

40

Dynamically Reparameterized Light Fields 7
MIT LCS Computer Graphics Group

prerecorded scores for each focal surface intersection and
compare them.

To find the best focal surface for a ray, an algorithm must
first obtain intersections and scores for each focal surface.
Since this is linear in the number of focal surfaces, we would
like to keep the number of focal surfaces small. However, the
radiance functions are highly local, and small changes in the
focal surface position can give large changes in the score.
Nevertheless, the accuracy needed in placing the focal
surfaces is not very high. That is, we do not need to find the
exact surface that makes the object we are looking at in perfect
focus; we just need to find a surface that is close to the object.
Therefore, we can first calculate the scores by sampling the
radiance functions for a large number of planes, and then
‘squash’ the scores down into a smaller set of planes using
some function),...,(mii +σσλ . For example, in Figure 14, we

first calculate the radiance scores for 16 planes. Then, using
some combining function λ , we combine the scores from
these 16 planes down to new scores on four planes. These
four planes and their scores will be used as focal surfaces at
run time. We chose to use the maximizing function, that is,

),...,max(),...,(miimii ++ = σσσσλ . Other non-linear or linear

weighting function might provide better results. Figure 22
was created using 8 focal planes combined down to 4.

Figure 14: We can compute scores on many focal surfaces, and
then combine them to a smaller set of focal surfaces, so the run-
time algorithm will have less scores to compare.

Figure 15: Here is a visualization of the scores used on the front
focal plane for the picture in Figures 11 and 20. The closer to
white, the better the score σ, which means objects are likely to be
located near that plane.

Figure 16: Here is a visualization of the scores on the back focal
plane, analogous to Figure 15.

Selecting a Focal Surface through Auto-focus
Techniques

We often select focal planes by hand, allowing a user to select
the subject of the image. However, it is possible to determine
these focal planes algorithmically, much an auto-focus
camera. It is possible that by adapting these algorithms, we
could identify a minimal set of focal planes that would put the
most items in focus.

For a single plane, this would be analogous to using an
auto-focus camera [Pentland87]. To do auto-focusing, one
can create a series of images with an extremely narrow depth
of field, where each image would put the focal plane at a
different depth. This narrow depth of field can be
implemented by increasing the aperture radius so that a ray
from every camera is averaged to produce a single output ray.
The resulting images will have out-of-focus and in-focus
regions. The out-of-focus regions will have little high-

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15 σ16

λ(σ1,σ2,σ3,σ4) λ(σ5...σ8) λ(σ9...σ12) λ(σ13...σ16)

1Fσ
3Fσ

4Fσ
2Fσ

41

Dynamically Reparameterized Light Fields 8
MIT LCS Computer Graphics Group

frequency energy, where as the regions in focus will. Since
only structure very near the focal planes will be in focus, we
know that the in-focus regions identify regions where there is
structure. Thus, if we pass a high-pass filter over these
narrow depth of field images and then identify the regions
with high-frequency energy, we will find the regions in space
where structure exists. Then, we can use the plane (or set of
planes) which gives rise to the image with the most high-
frequency energy: this plane is our auto-focus plane.
Likewise, we could take the n-best planes for a multiple focal
plane rendering.

Objects with little high-frequencies, even when they are in
focus, such as flat regions with little texture, will not be
detected by this process. However, objects with little high-
frequency will look as good if they are out of focus as if they
are in focus. Whereas using computer vision techniques to
find depth from a set of images would have to further analyze
these ambiguous regions, we do not have to delve further since
several values will be good enough: we can simply take the
best one that we find.

Results
The two light field data sets shown in this picture were created
as follows. The tree data set, with 256 input images, was
rendered in Povray 3.1, each image at 320x240. The stuffed
animal data set was more complex to create. We attached an
Electrim EDC1000E CCD camera (654x496) with an 16mm
variable aperture lens to an X-Y motion platform from Arrick
Robotics (30”x30” displacement). Then, we took 256 pictures
on a (approximately) 16”x16” grid, which took approximately
30 minutes. To calibrate the camera, we first used a Faro
Arm, a submillimeter accurate contact digitizer, to measure
the 3-D spatial coordinates (x,y,z) of the centers of 24 large
circular calibration pattern on two perpendicular planes filling
the camera’s field of view. Then, using a picture of the
calibration pattern, we found the centroids (i,j) of these dots in
the images with MATLAB. We then fed the 24 5-tuples
(x,y,z,i,j) into the Tsai-Lenz camera calibration algorithm
[Tsai87] which reported focal length, CCD sensor element
aspect ratio, principle point, and extrinstic rotational
orientation. We ignored radial lens distortion, which was
reported as less than 1 pixel per 1000 pixels. Finally, we
resampled the raw 256 654x496 images down to 327x248
before using them as input to the renderer.

Internally, our light fields used no compression techniques
as presented in earlier papers. Our particular high frequency
filter looked for the mean energy in a sampled radiance
function that had been processed by a gradient magnitude
Sobel edge detection filter [Lim90]. The scores on the focal
surface were rendered at 920x690 and not interpolated. We
use bilinear interpolation between samples on the image
surfaces. When rendering with the variable apertures, we used
cone weighting to combine the rays from each camera.

Using our renderer, we can typically render images with
the four nearest cameras in about one second. In our code, we
have maintained a general interface that allows for flexibilty

and fast development. In the near future we plan to implement
a real time renderer that will optimize for speed.

Conclusions
Previous implementations have tried to solve focusing
problems by 1) using scenes that were roughly planar, 2) using
aperture filtering to blur the input data, or 3) using
approximate geometry. Unfortunately, most scenes can not be
confined to a single plane, aperture filtering can not be undone
or controlled at run time, and proxy surfaces can be hard to
obtain. We have presented a new parameterization that allows
run-time control of what should be in focus. In addition to
describing focus control through aperture size and a moving
focal surface, we have presented a strategy for using multiple
focal planes and methods to create them. This new
parameterization allows light fields to capture data sets with
depth, and helps bring us closer to truly photorealistic virtual
reality.

There is much future work to be done. We would like to
improve our scoring system for our multiple focal planes: we
need a method to differentiate between high frequencies in the
radiance function caused by occlusion and those caused by
empty space. In Figure 20, the errors surrounding the red bull
identify how these errors affect the final images. Also, we
would like an algorithm for optimally picking the n best focal
planes, perhaps using the presented auto-focus techniques.
The camera calibration step is somewhat tedious, and we
would like to self-calibrate using the light fields. This would
give us the optimal camera model for each light field, as
opposed to assuming the light field to works with a prior
camera calibration. Finally, we are working on methods to
speed up the renderer so that we can view these light fields in
a head-mount-display.

We would like to thank Hughes Research Labs, Intel
Corporation, and Microsoft Corporation for monetary,
equipment, and software donations. Also, thanks to Neil
Alexander for his "Alexander Bay" tree model, and to Charles
Lee for help in making our pictures and animations.

Figure 17: Using a single focal plane, only the red bull is in focus,
while the yellow fish and the monitor are out of focus.

42

Dynamically Reparameterized Light Fields 9
MIT LCS Computer Graphics Group

Figure 18: By moving the focal plane back in the scene, we can
make the fish in focus, while the red bull and the monitor are out
of focus.

Figure 19: Finally, the focal plane is at the back of the room,
making the monitor in focus, while the fish and red bull are
blurry.

Figure 20: By using two focal planes, we can make the bull and
the monitor in focus, while the regions in between are still out of
focus.

Figure 21: Using the standard light field parameterization, only
one fixed plane can be in focus. Using the smallest aperture
available, this would be the best picture we could create.

Figure 22: By using 4 focal planes (originally 8 focal planes with
scores compressed down to 4), we can clearly do better than the
image in Figure 21. Especially note the hills in the background
and the rock in the foreground.

References
[Bolles87] Bolles, R. C., H. H. Baker, and D. H.

Marimont, “Epipolar-Plane Image Analysis:
An Approach to Determining Structure from
Motion,” International Journal of
Computer Vision, Vol. 1, 1987.

[Camahort98] Camahort, E., A. Lerios, and D. Fussell,
“Uniformly Sampled Light Fields,”
Proceedings of the 9th EUROGRAPHICS
Workshop on Rendering, Vienna, Austria,
June/July 1998

43

Dynamically Reparameterized Light Fields 10
MIT LCS Computer Graphics Group

[Cook84] Cook, R.L., T. Porter, and L. Carpenter,
"Distributed Ray Tracing," Computer
Graphics (SIGGRAPH’84 Conference
Proceedings), July 1984, pp. 137-145.

[Gortler96] Gortler, S.J., R. Grzeszczuk, R. Szeliski, and
M.F. Cohen, “The Lumigraph,” Computer
Graphics (SIGGRAPH’96 Conference
Proceedings), August 1996, pp. 43-54.

[Gu96] Gu, X., S.J. Gortler, M.F. Cohen, "Polyhedral
Geometry and the Two-Plane
Parameterization," 7th Eurographics
Workshop on Rendering, 1996. (also,
http://hillbilly.deas.harvard.edu/~sjg/papers/tpp.ps)

[Haeberli94] Haeberli, Paul, “A Multifocus Method for
Controlling Depth of Field,”
http://www.sgi.com/grafica/depth/index.html,
October 1994.

[Levoy96] Levoy, M. and P. Hanrahan, “Light Field
Rendering,” Computer Graphics
(SIGGRAPH’96 Conference Proceedings),
August 1996, pp. 31-42.

[Lim90] Lim, J.S., Two-dimensional Signal and
Image Processing, Prentice Hall P T R, New
Jersey, 1990, pp 476 –483.

[Mitchell88] Mitchell, D.P. and A.N. Netravali,
“Reconstruction Filters in Computer
Graphics,” Computer Graphics
(SIGGRAPH ’88 Conference Proceedings),
August 1988, pp. 221-228

[Pentland87] Pentland, A.P., "A New Sense for Depth of
Field," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 9,
no. 4, July 1987, pp. 523-531.

[Tsai87] Tsai, R. Y., “A Versatile Camera Calibration
Technique for High-Accuracy 3D Machine
Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses,” IEEE Journal of
Robotics and Automation, Vol. RA-3, No. 4,
August 1987.

44

Polyhedral Visual Hulls for Real-Time
Rendering

Wojciech Matusik Chris Buehler Leonard McMillan
MIT Laboratory for Computer Science

Abstract. We present new algorithms for creating and rendering visual hulls in
real-time. Unlike voxel or sampled approaches, we compute an exact polyhedral
representation for the visual hull directly from the silhouettes. This represen-
tation has a number of advantages: 1) it is a view-independent representation,
2) it is well-suited to rendering with graphics hardware, and 3) it can be com-
puted very quickly. We render these visual hulls with a view-dependent texturing
strategy, which takes into account visibility information that is computed during
the creation of the visual hull. We demonstrate these algorithms in a system that
asynchronously renders dynamically created visual hulls in real-time. Our system
outperforms similar systems of comparable computational power.

1 Introduction

A classical approach for determining a three-dimensional model from a set of images
is to compute shape-from-silhouettes. Most often, shape-from-silhouette methods em-
ploy discrete volumetric representations [12, 19]. The use of this discrete volumetric
representation invariably introduces quantization and aliasing artifacts into the resulting
model (i.e. the resulting model seldom projects back to the original silhouettes).

Recently, algorithms have been developed for sampling and texturing visual hulls
along a discrete set of viewing rays [10]. These algorithms have been developed in the
context of a real-time system for acquiring and rendering dynamic geometry. These
techniques do not suffer from aliasing effects when the viewing rays correspond to
the pixels in a desired output image. In addition, the algorithms address the rendering
problem by view-dependently texturing the visual hull with proper visibility. However,
these algorithms are only useful when a view-dependent representation of the visual
hull is desired.

In this paper, we present algorithms for computing and rendering an exact polyhe-
dral representation of the visual hull. This representation has a number of desirable
properties. First, it is a view-independent representation, which implies that it only
needs to be computed once for a given set of input silhouettes. Second, the represen-
tation is well-suited to rendering with graphics hardware, which is optimized for trian-
gular mesh processing. Third, this representation can be computed and rendered just as
quickly as sampled representations, and thus it is useful for real-time applications.

We demonstrate our visual hull construction and rendering algorithms in a real-
time system. The system receives input from multiple video cameras and constructs
visual hull meshes as quickly as possible. A separate rendering process asynchronously
renders these meshes using a novel view-dependent texturing strategy with visibility.

45

goodelle

goodelle
Appendix E:

1.1 Previous Work

Laurentini [8] introduced the visual hull concept to describe the maximal volume that
reproduces the silhouettes of an object. Strictly, the visual hull is the maximal volume
constructed from all possible silhouettes. In this paper (and in almost any practical
setting) we compute the visual hull of an object with respect to a finite number of
silhouettes. The silhouette seen by a pinhole camera determines a three-dimensional
volume that originates from the camera’s center of projection and extends infinitely
while passing through the silhouette’s contour on the image plane. We call this volume
a silhouette cone. All silhouette cones exhibit the hull property in that they contain the
actual geometry that produced the silhouette. For our purposes, a visual hull is defined
as the three-dimensional intersection of silhouette cones from a set of pinhole silhouette
images.

Visual hulls are most often computed using a discrete three-dimensional grid of
volume elements (voxels). This technique, known as voxel carving [12, 19], proceeds
by projecting each voxel onto each of the source image planes, and removing those
voxels that fall completely outside of any silhouette. Octree-hierarchies are often used
to accelerate this procedure. Related to voxel approaches, a recent algorithm computes
discrete slices of the visual hull using graphics hardware for acceleration [9]. Other
approaches improve the shape using splines [17] or color information [18].

If the primary purpose of a shape representation is to produce new renderings of
that shape from different viewing conditions, then construction of an explicit model
is not necessary. The image-based visual hull technique introduced in [10], renders
unique views of the visual hull directly from the silhouette images, without constructing
an intermediate volumetric or polyhedral model. This is accomplished by merging
the cone intersection calculation with the rendering process, resulting in an algorithm
similar in spirit to CSG ray casting [15].

However, sometimes an explicit three-dimensional model of the visual hull is de-
sired. There has been work [4, 14] on general Boolean operations on 3D polyhedra.
Most of these algorithms require decomposing the input polyhedra into convex poly-
hedra. Then, the operations are carried out on the convex polyhedra. By contrast, our
algorithm makes no convexity assumptions; instead we exploit the fact that each of the
intersection primitives (i.e., silhouette cones) are generalized cones with constant scaled
cross-section. The algorithm in [16] also exploits the same property of silhouette cones,
but exhibits performance unsuitable for real-time use.

View-dependent rendering is very popular for models that are acquired from real
images (e.g., see [13]). The rendering algorithm that we use is closely related to view-
dependent texture mapping (VDTM), introduced in [5] and implemented in real-time in
[6]. The particular algorithm that we use is different from those two, and it is based on
the unstructured lumigraph rendering (ULR) algorithm in [3]. In our implementation,
we extend the ULR algorithm to handle visibility, which was not covered in the original
paper.

Our real-time system is similar to previous systems. The system in [11] constructs
visual hull models using voxels and uses view-dependent texture mapping for rendering,
but the processing is done as an off-line process. The Virtualized Reality system [7]
also constructs models of dynamic event using a variety of techniques including multi-
baseline stereo.

46

Fig. 1. A single silhouette cone face is shown, defined by the edge in the center silhouette. Its
projection in two other silhouettes is also shown.

2 Polyhedral Visual Hull Construction

We assume that each silhouette s is specified by a set of convex or non-convex 2D
polygons. These polygons can have holes. Each polygon consists of a set of edges
joining consecutive vertices that define its (possibly multiple) contours. Moreover, for
each silhouette s we know the projection matrix associated with the imaging device
(e.g., video camera) that generated the silhouette. We use a 4× 4 projection matrix that
maps 3D coordinates to image (silhouette) coordinates, and whose inverse maps image
coordinates to 3D directions.

2.1 Algorithm Outline

In order to compute the visual hull with respect to the input silhouettes, we need to
compute the intersection of the cones defined by the input silhouettes. The resulting
polyhedron is described by all of its faces. Note that the faces of this polyhedron can
only lie on the faces of the original cones, and the faces of the original cones are defined
by the projection matrices and the edges in the input silhouettes.

Thus, a simple algorithm for computing the visual hull might do the following: For
each input silhouette si and for each edge e in the input silhouette s i we compute the
face of the cone. Then we intersect this face with the cones of all other input silhouettes.
The result of these intersections is a set of polygons that define the surface of the visual
hull.

2.2 Reduction to 2D

The intersection of a face of a cone with other cones is a 3D operation (these are
polygon-polyhedron intersections). It was observed by [10, 16] that these intersections
can be reduced to simpler intersections in 2D. This is because each of the silhouette
cones has a fixed scaled cross-section; that is, it is defined by a 2D silhouette. Reduc-
tion to 2D also allows for less complex 2D data structures to accelerate the intersections.

47

To compute the intersection of a face f of a cone cone(s i) with a cone cone(sj),
we project f onto the image plane of silhouette sj (see Figure 1). Then we compute the
intersection of projected face f with silhouette sj . Finally, we project back the resulting
polygons onto the plane of face f .

2.3 Efficient Intersection of Projected Cones and Silhouettes

In the previous section, we discussed intersecting a projected cone face f with a sil-
houette sj . If we repeat this operation for every projected cone face in cone(s i), then
we will have intersected the entire projected silhouette cone cone(s i) with silhouette
sj . In this section we show how to efficiently compute the intersection of the pro-
jected cone cone(si) with the silhouette sj . We accelerate the intersection process
by pre-processing the silhouettes into Edge-Bin data structures as described in [10].
The Edge-Bin structure spatially partitions a silhouette so that we can quickly compute
the set of edges that a projected cone face intersects. In the following, we abbreviate
cone(si) as ci for simplicity.

Construction of Edge-Bins. First, we observe that in case of perspective projection
all rays on the surface of the cone ci project to a pencil of lines sharing a common
point p0 (i.e., the epipole) in the image plane of sj . We can parameterize all projected
lines based on the slope α that these lines make with some reference line. Given this
parameterization we partition the domain of α = (−∞,∞) into ranges such that any
projected line with the slope falling inside of the given range always intersects the same
set of edges of the silhouette sj . We define a bin bk to be a three-tuple: the start αstart,
the end αend of the range, and a corresponding set of edges Sk, bk = (αstart, αend, Sk).
We note that each silhouette vertex corresponds to a line that defines a range boundary.

In certain configurations, all rays project to a set of parallel epipolar lines in the im-
age plane of sj . When this case occurs, we use a line p(α) = p0 + dα to parameterize
the lines, where p0 is some arbitrary point on the line p(α) and d is a vector perpen-
dicular to the direction of the projected rays. To define bins, we use the values of the
parameter α at the intersection points of the line p(α) with the epipolar lines passing
through the silhouette vertices. In this way we can describe the boundary of the bin
using two values αstart and αend, where αstart, αend are the values of α for the lines
passing through two silhouette vertices that define the region.

The Edge-Bin construction involves two steps. First, we sort the silhouette vertices
based on the value of the parameter α. The lines that pass through the silhouette vertices
define the bin boundaries.

Next, we observe that two consecutive slopes in the sorted list define αstart and
αend for each bin. To compute a set of edges assigned to each bin we traverse the
sorted list of silhouette vertices. At the same time we maintain the list of edges in the
current bin. When we visit a vertex of the silhouette we remove from the current bin
an edge that ends at this vertex, and we add an edge that starts at the vertex. The start
of an edge is defined as the edge endpoint that has a smaller value of parameter α. In
Figure 2 we show a simple silhouette, bins, and corresponding edges for each bin.

The edges in each bin need to be sorted based on the increasing distance from the
point p0 (or the distance from parameterization line p(α) in case of the parallel lines).
The efficient algorithm first performs a partial ordering on all the edges in the silhouette
such that the edges closer to the point p0 are first in the list. Then, when the bins are
constructed the edges are inserted in the bins in the correct order.

48

e1

Bin 5
e2

e6

e5

e3

e4

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3Bin 2

p0

e1Bin 5

e2

e6

e5

e3

e4

p0

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3

Bin 2

Bin 1 2 3 4 5 6 7
Edges ∅ e2, e3 e2, e4 e2, e5 e2, e6 e1, e6 ∅

Fig. 2. Two example silhouettes and their corresponding Edge-Bin data structures. Two cases are
shown, one with convergent bins and one with parallel bins. The edges that are stored in the bins
are listed in the accompanying table.

Efficient Intersection of the Projected Cone Faces with a Silhouette. Using the
edge bin data structure, we can compute efficiently the intersection of the projected cone
ci with the silhouette sj of some other cone cj . In order to compute the intersection we
process the faces of cone ci in consecutive order. We start by projecting the first face f1

onto the plane of silhouette sj . The projected face f1 is defined by its boundary lines
with the values αp1 , αp2. First, we need to find a bin b = {αstart, αend, S} such that
αp1 ∈ (αstart, αend). Then, we intersect the line αp1 with all the edges in S. Since
the edges in S are sorted based on the increasing distance from the projected vertex
of cone ci (or distance from line p(α) in case of parallel lines) we can immediately
compute the edges of the resulting intersection that lie on line αp1. Next, we traverse
the bins in the direction of the value αp2. As we move across the bins we build the
intersection polygons by adding the vertices that define the bins. When we get to the
bin b′ = {α′

start, α
′
end, S

′} such that αp2 ∈ (α′
start, α

′
end) we intersect the line αp2

with all edges in S ′ and compute the remaining edges of the resulting polygons. It
is important to note that the next projected face f2 is defined by the boundary lines
αp2, αp3. Therefore, we do not have to search for the bin α p2 falls into. In this manner
we compute the intersection of all projected faces of cone c i with the silhouette sj .

2.4 Calculating Visual Hull Faces

In the previous section we described how to perform the intersection of two cones ef-
ficiently. Performing the pairwise intersection on all pairs of cones results in k − 1
polygon sets for each face of each cone, where k is the total number of silhouettes. The
faces of the visual hull are the intersections of these polygon sets at each cone face. It
is possible to perform the intersection of these polygon sets using standard algorithms
for Boolean operations [1, 2], but we use a custom algorithm instead that is easy to
implement and can output triangles directly.

Our polygon intersection routine works by decomposing arbitrary polygons into
quadrilaterals and intersecting those. In Figure 3, we demonstrate the procedure with

49

Region 2

Region 3

Region 1

Fig. 3. Our polygon intersection routine subdivides polygons into quadrilaterals for intersection.

two 5-sided polygons, one with vertical hatching and the other with horizontal hatching.
We first divide the space occupied by the polygons into triangular regions based on
the polygons’ vertices and the apex of the silhouette cone (similar to the Edge-Bin
construction process). Note that within each triangular region, the polygon pieces are
quadrilaterals. Then, we intersect the quadrilaterals in each region and combine all of
the results into the final polygon, shown with both horizontal and vertical hatching.

The resulting polyhedral visual hull includes redundant copies of each vertex in
the polyhedron (in fact, the number of copies of each vertex is equal to the degree
of the vertex divided by 2). To optionally eliminate the redundant copies, we simply
merge identical vertices. Ideally, our algorithm produces a watertight triangular mesh.
However, because of our non-optimal face intersection routine, our meshes may contain
T-junctions which violate the watertight property.

2.5 Visibility

In order to properly texture map the visual hull we need to determine which parts of the
visual hull surface are visible from which cameras.

This visibility problem is equivalent to the shadow determination problem where
one places a point light source at each reference camera position, and the goal is to
determine which parts of the scene are illuminated by the light and which parts lie in a
shadow. Standard graphics (hardware) algorithms are directly applicable since we have
a mesh representation of the visual hull surface. However, they require rendering the
scene from each input camera viewpoint and reading the z-buffer or the frame-buffer.
These operations can be slow (reading the frame and z-buffer can be slow) and they can
suffer from the quantization artifacts of the z-buffer.

We present an alternative novel software algorithm that computes the visible parts of
the visual hull surface from each of the input cameras. The algorithm has the advantages
that it is simple, and it can be computed virtually at no cost at the same time that we
compute the visual hull polygons.

Let us assume that we want to compute whether the faces of the visual hull that lie
on the extruded edge i in silhouette sj are visible from image k.

We observe that these faces have to be visible from the camera k if the edge i is
visible from the epipole p0 (the projection of the center of projection of image k onto
the image plane of camera j). This effectively reduces the 3D visibility computation to
the 2D visibility computation. Moreover, we can perform the 2D visibility computation
very efficiently using the edge-bin data structures that we already computed during the

50

camera j

camera k
p

0

Fig. 4. We perform a conservative visibility test in 2D. In this example, the thick edges in the
silhouette of camera cj have been determined to be visible by camera ck. These 2D edges corre-
spond to 3D faces in the polyhedral visual hull.

visual hull computation.
First, we label all edges invisible. Then, to determine the visibility of edges in image

j with respect to image k we traverse each bin in the Edge-Bin data structure. For each
bin, we label the part of the first edge that lies in the bin as visible (see Figure 4). The
edges in the bin are sorted in the increasing distance from the epipole; thus, the first
edge in the bin corresponds to the front-most surface.

If the edge is visible in its full extent (if it is visible in all the bins in which it resides)
then the edge is visible. If the edge is visible in some of its extent (if it is visible only in
some bins in which it resides) then the edge is partially visible. The easiest solution in
this case is to break it into the visible and invisible segments when computing the faces
of the visual hull.

The visibility computation described in this section is conservative; we never label
an edge visible if it is in fact invisible. However, it is often over-conservative, especially
for objects whose silhouettes contains many holes.

3 View-Dependent Texturing

We have applied a novel view-dependent texturing strategy for rendering our polyhedral
visual hull models in real-time. Our algorithm is based on the unstructured lumigraph
rendering (ULR) algorithm detailed in [3], and we have added extensions to handle the
visibility information computed during the visual hull construction.

The core idea of ULR is that the influence of a single image on the final rendering is
a smoothly varying function across the desired image plane (or, equivalently, across the
geometry representing the scene). These smooth weighting functions combine to form
a image “blending field” that specifies how much contribution each input image makes
to each pixel in the output image. The assumption of smoothness suggests an efficient
rendering strategy: sparsely sample the image blending field and reconstruct it using
simple basis functions (e.g., linear hat functions). The reconstructed blending field is
then used to blend pixels from the input images to form the output image.

In the case of real-time rendering, the blending field can be efficiently reconstructed
by triangulating the samples and using hardware alpha interpolation across the faces of

51

Desired Ray

Q

Q
Q

Q

1

2

3

k

Fig. 5. Our k-nearest neighbor weighting is based on the k cameras with viewing rays closest in
angle to the desired viewing ray. In this example, the desired ray is shown in bold in addition to
four camera viewing rays. The angles of the k closest cameras are ordered such that Θ1 ≤ Θ2 ≤
Θ3 ≤ . . . ≤ Θk, and Θk is taken to be the threshold at which the weighting function falls to
zero.

the triangles. The input image pixels are then blended together by projectively texturing
mapping the triangles and accumulating the results in the frame buffer. The pseudocode
for a multi-pass rendering version of the algorithm proceeds as follows:

Construct a list of blending field sample locations
for each input image i do

for each blending field sample location do
evaluate blending weight for image i and store in alpha channel

end for
Set current texture i
Set current texture matrix Pi

Draw triangulated samples using alpha channel blending weights
end for

The sample locations are simply 3D rays along which the blending field is evaluated.
In the case when a reasonably dense model of the scene is available, sampling along
the rays emanating from the desired viewpoint and passing through the vertices of the
model is generally sufficient to capture the variation in the blending field. In this case,
the triangles that are drawn are the actual triangles of the scene model. By contrast,
in the general unstructured lumigraph case, one may sample rays randomly, and the
triangles that are drawn may only roughly approximate the true scene geometry.

The texture matrix Pi is simply the projection matrix associated with camera i. It is
rescaled to return texture coordinates between 0 and 1. In our real-time system, these
matrices are obtained from a camera calibration process.

3.1 Evaluating the Blending Weights

Our view-dependent texturing algorithm evaluates the image blending field at each ver-
tex of the visual hull model. The weight assigned to each image is calculated to favor
those cameras whose view directions most closely match that of the desired view. The
weighting that we use is the k-nearest neighbor weighting used in [3] and summarized
here. For each vertex of the model, we find the k cameras whose viewings rays to that
vertex are closest in angle to the desired viewing ray (see Figure 5). Consider the k th

ray with the largest viewing angle, Θk. We use this angle to define a local weighting
function that maps the other angles into the range from 0 to 1: weight(Θ) = 1 − Θ

Θk
.

52

Applying this function to the k angles results (in general) in k−1 non-zero weights.
We renormalize these weights to arrive at the final blending weights. In practice, we
typically use k = 3 in our four camera system, which results in two non-zero weights
at each vertex.

Although other weighting schemes are possible, this one is easy to implement and
does not require any pre-processing such as in [6]. It results in a (mostly) smooth
blending field except in degenerate cases, such as when k (or more) input rays are
equidistant from the desired ray or when less than k nearest neighbors can be found
(due to visibility or some other reason).

3.2 Handling Visibility

The algorithm in [3] does not explicitly handle the problem of visibility. In our case,
we have visibility information available on a per-polygon basis. We can distinguish
two possible approaches to incorporating this information: one that maintains a contin-
uous blending field reconstruction and one that does not. A continuous blending field
reconstruction is one in which the blending weights for the cameras on one side of a
triangle edge are the same as on the other side of the edge. A continuous reconstruction
generally has less apparent visual artifacts.

A simple rule for utilizing visibility while enforcing continuous reconstruction is
the following: if vertex v belongs to any triangle t that is not visible from camera c,
then do not consider c when calculating the blending weights for v. This rule causes
camera c’s influence to be zero across the face of triangle t, which is expected because
t is not visible from c. It also forces c’s influence to fall to zero along the other sides
of the edges of t (assuming that the mesh is watertight) which results in a continuous
blending function.

The assumption of a watertight mesh makes the continuous visibility rule unsuitable
for our non-watertight visual hull meshes. Even with a watertight mesh, the mesh must
be fairly densely tessellated, or the visibility boundaries may not be well-represented.

For these reasons, we relax the requirement of reconstruction continuity in our vis-
ibility treatment. When computing blending weights, we create a separate set of blend-
ing weights for each triangle. Each set of blending weights is computed considering
only those cameras that see the triangle. When rendering, we replicate vertices so that
we can specify different sets of blending weights per-triangle rather than per-vertex. Al-
though this rendering algorithm is less elegant and more complex than the continuous
algorithm, it works well enough in practice.

4 Real-Time System

The current system uses four calibrated Sony DFW-V500 IEEE-1394 video cameras.
Each camera is attached to a separate client (600 MHz Athlon desktop PC). The cam-
eras are synchronized to each other using an external trigger signal. Each client captures
the video stream at 15 fps and performs the following processing steps: First, it seg-
ments out the foreground object using background subtraction. Then, the silhouette
and texture information are compressed and sent over a 100Mb/s network to a central
server. The system typically processes video at 320 × 240 resolution. It can optionally
process 640 × 480 video at a reduced frame rate.

The central server (2x933MHz Pentium III PC) performs the majority of the com-
putations. The server application has the following three threads:

53

• Network Thread - receives and decompresses the textures and silhouettes from
the clients.

• Construction Thread - computes the silhouette simplification, volume intersec-
tion, and visibility.

• Rendering Thread - performs the view-dependent texturing and display.

Each thread runs independently of the others. This allows us to efficiently utilize the
multiple processors of the server. It also enables us to render the visual hull at a faster
rate than we compute it. As a result, end users perceive a higher frame rate than that at
which the model is actually updated.

5 Results

Our system computes polyhedral visual hull models at a peak 15 frames per second,
which is the frame rate at which our cameras run. The rendering algorithm is decoupled
from the model construction, and it can run up to 30 frames per second depending on
the model complexity. The actual frame rates of both components, especially rendering,
are dependent on the model complexity, which in turn depends on the complexity of the
input silhouette contours. In order to maintain a relatively constant frame rate, we
simplify the input silhouettes with a coarser polygonal approximation. The amount of
simplification is controlled by the current performance of the system.

In Figure 6, we show two flat-shaded renderings of a polyhedral visual hull that was
captured in real-time from our system. These images demonstrate the typical models
that our system produces. The main sources of error in creating these models is poor
image segmentation and a small number of input images.

Figure 7 shows the same model view-dependently textured with four video images.
In Figure 7a, the model is textured using information from our novel visibility algo-
rithm. This results in a discontinuous reconstruction of the blending field, but it more
accurately captures regions of the model that were not seen by the video cameras. In
Figure 7b, the model is textured without visibility information. The resulting blending
field is very smooth, although some visibility errors are made near occlusions.

Figure 8 shows visualizations of the blending fields of the previous two figures.
Each of the four cameras is assigned a color (red, green, blue, and yellow), and the
colors are blended together using the camera blending weights. It is clear from these
images that the image produced using visibility information is discontinuous while the
other image is not.

6 Future Work and Conclusions

In offline testing, our algorithms are sufficiently fast to run at full 30 frames per second
on reasonable computer hardware. The maximum frame rate of our current live system
is limited by the fact that our cameras can only capture images at 15 frames per second
in synchronized mode. Clearly, it would improve the system to use better and more
cameras that can run at 30 frames per second. Additional cameras would both improve
the shape of the visual hulls and the quality of the view-dependent texturing.

In the current system we compute and throw away a different mesh for each frame
of video. For some applications it might be useful to derive the mesh of the next frame
as a transformation of the mesh in the original frame and to store the original mesh plus
the transformation function. Temporal processing such as this would also enable us to

54

accumulate the texture (radiance) of the model as it is seen from different viewpoints.
Such accumulated texture information could be used to fill in parts that are invisible in
one frame with information from other frames.

In this paper we have presented novel algorithms for efficiently computing and ren-
dering polyhedral visual hulls directly from a set of images. We implemented and
tested these algorithms in a real-time system. The speed of this system and the quality
of the renderings are much better than previous systems using similar resources. The
primary advantage of this system is that it produces polygonal meshes of the visual
hull in each frame. As we demonstrated, these meshes can be rendered quickly using
view-dependent texture mapping and graphics hardware.

References

1. Balaban, I. J., “An Optimal Algorithm for Finding Segments Intersections,” Proc. 11th Annual
ACM Symposium on Computational Geometry, (1995), pp. 211-219.

2. Bentley, J. and Ottmann, T., “Algorithms for Reporting and Counting Geometric Intersec-
tions,” IEEE Trans. Comput., C-28, 9 (Sept. 1979), pp. 643-647.

3. Buehler, C., Bosse, M., Gortler, S., Cohen, M., McMillan, L., “Unstructured Lumigraph Ren-
dering,” To appear SIGGRAPH 2001.

4. Chazelle, B., “An Optimal Algorithm for Intersecting Three-Dimensional Convex Polyhedra,”
SIAM J. Computing, 21 (1992), pp. 671-696.

5. Debevec, P., Taylor, C., Malik. J., “Modeling and Rendering Architecture from Photographs,”
SIGGRAPH 1996, pp. 11-20.

6. Debevec, P., Yu, Y., Borshukov, G. D., “Efficient View-Dependent Image-Based Rendering
with Projective Texture Mapping,” Eurographics Rendering Workshop, (1998).

7. Kanade, T., P. W. Rander, P. J. Narayanan. “Virtualized Reality: Constructing Virtual Worlds
from Real Scenes,” IEEE Multimedia, 4, 1 (March 1997), pp. 34-47.

8. Laurentini, A., “The Visual Hull Concept for Silhouette Based Image Understanding,” IEEE
PAMI, 16, 2 (1994), pp. 150-162.

9. Lok, B., “Online Model Reconstruction for Interactive Virtual Environments,” I3D 2001.
10. Matusik, W., Buehler, C., Raskar, R., Gortler, S., McMillan, L., “Image-Based Visual

Hulls,”SIGGRAPH 2000, (July 2000), pp. 369-374.
11. Moezzi, S., D.Y. Kuramura, R. Jain. “Reality Modeling and Visualization from Multiple

Video Sequences,” IEEE CG&A, 16, 6 (Nov 1996), pp. 58-63.
12. Potmesil, M., “Generating Octree Models of 3D Objects from their Silhouettes in a Sequence

of Images,” CVGIP, 40 (1987), pp. 1-29.
13. Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L., and Stuetzle, W., “View-based

Rendering: Visualizing Real Objects from Scanned Range and Color Data,” 8th Eurographics
Workshop on Rendering, 1997.

14. Rappoport, A. and Spitz, S., “Interactive Boolean Operations for Conceptual Design of 3D
Solids,” SIGGRAPH 1997, pp. 269-278.

15. Roth, S. D., “Ray Casting for Modeling Solids,” Computer Graphics and Image Processing,
18 (Feb 1982), pp. 109-144.

16. Rozenoer, M. and Shlyakhter, I., “Reconstruction of 3D Tree Models from Instrumented
Photographs,” M.Eng. Thesis, M.I.T., (1999).

17. Sullivan, S. and Ponce, J., “Automatic Model Construction, Pose Estimation, and Object
Recognition from Photographs Using Triangular Splines,” ICCV ’98, pp. 510-516, 1998.

18. Seitz, S. and Dyer, C., “Photorealistic Scene Reconstruction by Voxel Coloring,” CVPR ’97,
pp. 1067-1073, 1997.

19. Szeliski, R., “Rapid Octree Construction from Image Sequences,” CVGIP: Image Under-
standing, 58, 1 (July 1993), pp. 23-32.

55

(a) (b)

Fig. 6. Two flat-shaded views of a polyhedral visual hull.

(a) (b)

Fig. 7. Two view-dependently textured views of the same visual hull model. The left render-
ing uses conservative visibility computed in real-time by our algorithm. The right view ignores
visibility and blends the textures more smoothly but with potentially more errors.

(a) (b)

Fig. 8. Two visualizations of the camera blending field. The colors red, green, blue, and yellow
correspond to the four cameras in our system. The blended colors demonstrate how each pixel is
blended from each input image using both (a) visibility and (b) no visibility.

56

Unstructured Lumigraph Rendering

Chris Buehler Michael Bosse Leonard McMillan Steven Gortler Michael Cohen
MIT Laboratory for Computer Science Harvard University Microsoft Research

Abstract

We describe an image based rendering approach that generalizes
many current image based rendering algorithms, including light
field rendering and view-dependent texture mapping. In particular,
it allows for lumigraph-style rendering from a set of input cameras
in arbitrary configurations (i.e., not restricted to a plane or to any
specific manifold). In the case of regular and planar input camera
positions, our algorithm reduces to a typical lumigraph approach.
When presented with fewer cameras and good approximate geom-
etry, our algorithm behaves like view-dependent texture mapping.
The algorithm achieves this flexibility because it is designed to meet
a set of specific goals that we describe. We demonstrate this flexi-
bility with a variety of examples.
Keyword Image-Based Rendering

1 Introduction

Image-based rendering (IBR) has become a popular alternative to
traditional three-dimensional graphics. Two effective IBR meth-
ods are view-dependent texture mapping (VDTM) [3] and the light
field/lumigraph [10, 5] approaches. The light field and VDTM algo-
rithms are in many ways quite different in their assumptions and in-
put. Light field rendering requires a large collection of images from
cameras whose centers lie on a regularly sampled two-dimensional
patch, but it makes few if any assumptions about the geometry of
the scene. In contrast, VDTM assumes a relatively accurate ge-
ometric model, but requires only a small number of images from
input cameras that can be in general positions. These images are
then “projected” onto the geometry for rendering.

We suggest that, at their core, these two approaches are quite
similar. Both are methods for interpolating color values for a de-
sired ray as some combination of input rays. In VDTM this inter-
polation is performed using a geometric model to determine which
pixel from each input image “corresponds” to the desired ray in the
output image. Of these corresponding rays, those that are closest in
angle to the desired ray are weighted to make the greatest contribu-
tion to the interpolated result.

Light field rendering can be similarly interpreted. For each de-
sired ray (s, t, u, v), one searches the image database for rays that
intersect near some (u, v) point on a “focal plane” and have a simi-
lar angle to the desired ray, as measured by the ray’s intersection on
the “camera plane” (s, t). In a depth-corrected lumigraph, the focal
plane is effectively replaced with an approximate geometric model,

making this approach even more similar to view dependent texture
mapping.

Given these related IBR approaches, we attempt to address the
following questions: Is there a generalized rendering framework
that spans all of these image-based rendering algorithms, having
VDTM and lumigraph/light fields as extremes? Might such an al-
gorithm adapt well to various numbers of input images from cam-
eras in general configurations while also permitting various levels
of geometric accuracy?

In this paper we approach the problem by suggesting a set of
goals that any image based rendering algorithm should have. We
find that no previous IBR algorithm simultaneously satisfies all of
these goals. Therefore these algorithms behave quite well under
appropriate assumptions on their input, but may produce unneces-
sarily poor renderings when these assumptions are violated.

We then describe an algorithm for “unstructured lumigraph ren-
dering” (ULR), that generalizes both lumigraph and VDTM render-
ing. Our algorithm is designed specifically with the stated goals in
mind. As a result, our renderer behaves well with a wide variety
of inputs. These include source cameras that are not on a com-
mon plane, such as source images taken by moving forward into a
scene, a configuration that would be problematic for previous IBR
approaches.

It should be no surprise that our algorithm bears many resem-
blances to earlier approaches. The main contribution of our algo-
rithm is that, unlike previously published methods, it is designed to
meet a set of listed goals. Thus, it works well on a wide range of
differing inputs, from few images with an accurate geometric model
to many images with minimal geometric information.

2 Previous Work

The basic approach to view dependent texture mapping (VDTM) is
put forth by Debevec et al. [3] in their Façade image-based model-
ing and rendering system. Façade is designed to estimate geometric
models consistent with a small set of source images. As part of this
system, a rendering algorithm was developed where pixels from all
relevant cameras were combined and weighted to determine a view-
dependent texture for the derived geometric models. In later work,
Debevec et al [4] describe a real-time VDTM algorithm. In this
algorithm, each polygon in the geometric model maintains a “view
map” data structure that is used to quickly determine a set of three
input cameras that should be used to texture it. Like most real-time
VDTM algorithms, this algorithm uses hardware supported projec-
tive texture mapping [6] for efficiency.

At the other extreme, Levoy and Hanrahan [10] describe the light
field rendering algorithm, in which a large collection of images are
used to render novel views of a scene. This collection of images
is captured from cameras whose centers lie on a regularly sampled
two-dimensional plane. Light fields otherwise make few assump-
tions about the geometry of the scene. Gortler et al. [5] describe
a similar rendering algorithm called the lumigraph. In addition,
the authors of the lumigraph paper suggest many workarounds to
overcome limitations of the basic approach, including a “rebinning”
process to handle source images acquired from general camera po-
sitions and a “depth-correction” extension to allow for more ac-

57

goodelle
Appendix F:

curate ray reconstructions from an insufficient number of source
cameras.

Many extensions, enhancements, alternatives, and variations
to these basic algorithms have since been suggested. These in-
clude techniques for rendering digitized three-dimensional models
in combination with acquired images such as Pulli et al. [13] and
Wood et al. [18]. Shum et al. [17] suggests alternate lower di-
mensional lumigraph approximations that use approximate depth
correction. Heigl et al. [7] describe an algorithm to perform IBR
from an unstructured set of data cameras where the projections of
the source cameras’ centers were projected into the desired im-
age plane, triangulated, and used to reconstruct the interior pixels.
Isaksen et al. [9] show how the common “image-space” coordinate
frames used in light field rendering can be viewed as a focal plane
for dynamically generating alternative ray reconstructions. A for-
mal analysis of the trade off between the number of cameras and
the fidelity of geometry is presented in [1].

3 Goals

We begin by presenting a list of desirable properties that we feel an
ideal image-based rendering algorithm should have. No previously
published method satisfies all of these goals. In the following sec-
tion we describe a new algorithm that attempts to meet these goals
while maintaining interactive rendering rates.

Use of geometric proxies: When geometric knowledge is
present, it should be used to assist in the reconstruction of a desired
ray (see Figure 1). We refer to such approximate geometric infor-
mation as a proxy. The combination of accurate geometric proxies
with nearly Lambertian surface properties allows for high quality
reconstructions from relatively few source images. The reconstruc-
tion process merely entails looking for rays from source cameras
that see the “same” point. This idea is central to all VDTM algo-
rithms. It is also the distinguishing factor in geometry-corrected lu-
migraphs and surface light field algorithms. Approximate proxies,
such as the focal-plane abstraction used by Isaksen [9], allow for
the accurate reconstruction of rays at specific depths from standard
light fields.

With a highly accurate geometric model, the visibility of any
surface point relative to a particular source camera can also be de-
termined. If a camera’s view of the point is occluded by some other
point on the geometric model, then that camera should not be used
in the reconstruction of the desired ray. When possible, image-
based algorithms should consider visibility in their reconstruction.

C1

C5

C4

C3

D

C2

C6

Figure 1: When available, approximate geometric information
should be used to determine which source rays correspond well to
a desired ray. Here Cx denotes the position of a reference camera,
and D is desired novel viewpoint.

Unstructured input: It is also desirable for an image-based
rendering algorithm to accept input images from cameras in gen-
eral position. The original light field method assumes that the cam-
eras are arranged at evenly spaced positions on a single plane. This
limits the applicability of this method since it requires a special
capture gantry that is both expensive and difficult to use in many
settings [11].

The lumigraph paper describes an acquisition system that uses a
hand-held video camera to acquire input images [5]. They apply a
preprocessing step, called rebinning, that resamples the input im-
ages from virtual source cameras situated on a regular grid. This
rebinning process adds an additional reconstruction and sampling
step to lumigraph creation. This extra step tends to degrade the
overall quality of the representation. This can be demonstrated by
noting that a rebinned lumigraph cannot, in general, reproduce its
input images. The surface light field algorithm suffers from essen-
tially the same resampling problem.
Epipole consistency: When a desired ray passes through the
center of projection of a source camera it can be trivially re-
constructed from the ray database (assuming a sufficiently high-
resolution input image and the ray falls within the camera’s field-
of-view) (see Figure 2). In this case, an ideal algorithm should
return a ray from the source image. An algorithm with epipole
consistency will reconstruct this ray correctly without any geomet-
ric information. With large numbers of source cameras, algorithms
with epipole consistency can create accurate reconstructions with
essentially no geometric information. Light field and lumigraph al-
gorithms are designed specifically to maintain this property.

Surprisingly, many real-time VDTM algorithms do not ensure
this property, even approximately, and therefore, will not work
properly when given poor geometry. The algorithms described
in [13, 2] reconstruct all of the rays in a fixed desired view using
a fixed selection of three source images but, as shown by the origi-
nal light field paper, proper reconstruction of a desired image may
involve using some rays from each of the source images. The algo-
rithm described in [4] always uses three source cameras to recon-
struct all of the desired pixels on a polygon of the geometry proxy.
This departs from epipole consistency if the proxy is coarse. The
algorithm of Heigl et al. [7] is an notable exception that, like a light
field or lumigraph, maintains epipole consistency.

C1

C5

C4

C3C2

D

C6

Figure 2: When a desired ray passes through a source camera cen-
ter, that source camera should be emphasized most in the recon-
struction. Here this case occurs for cameras C1, C2, C3, and C6.

Minimal angular deviation: In general, the choice of which
input images are used to reconstruct a desired ray should be based
on a natural and consistent measure of closeness (See Figure 3). In
particular, source image rays with similar angles to the desired ray
should be used when possible.

58

Interestingly, the light field and lumigraph rendering algorithms
that select rays based on how close the ray passes to a source cam-
era manifold do not quite agree with this measure. As shown in
figure 3, the “closest” ray on the (s, t) plane is not necessarily the
closest one measured in angle.

C1 C2

D

q1

q2

Figure 3: Angle deviation is a natural measure of ray difference.
Interestingly, as shown in this case, the two plane parameterization
gives a different ordering of “closeness.” Source camera C2’s ray is
closer in angle to the desired ray, but the ray intersects the camera
(s, t) plane closer to C1.

Continuity: When one requests a ray with infinitesimal small
distance from a previous ray intersecting a nearby point on the
proxy, the reconstructed ray should have a color value that is cor-
respondingly close to the previously reconstructed color. Recon-
struction continuity is important to avoid both temporal and spatial
artifacts. For example, the contribution due to any particular camera
should fall to zero as one approaches the boundary of its field-of-
view [3], or as one approaches a part of a surface that is not seen by
a camera due to visibility [14].

The VDTM algorithm of [4], which uses a triangulation of the di-
rections to source cameras to pick the “closest three” does not pro-
vide spatial continuity, even at high tessellation rates of the proxy.
Nearby points on the proxy can have very different triangulations
of the “source camera view map” resulting in very different recon-
structions. While this objective is subtle, it is nonetheless impor-
tant, since lack of such continuity can introduce noticeable artifacts.

Resolution sensitivity: In reality, image pixels are not really
measures of a single ray, but instead an integral over a set of rays
subtending a small solid angle. This angular extent should ideally
be accounted for by the rendering algorithm (See Figure 4). For
example, if a source camera is far away from an observed surface,
then its pixels represent integrals over large regions of the surface.
If these ray samples are used to reconstruct a ray from a closer
viewpoint, an overly blurred reconstruction will result (assuming
the desired and reference rays subtend comparable solid angles).
Resolution sensitivity is an important consideration when combin-
ing source rays from cameras with different focal lengths, or when
combining rays from cameras with varying distance and oblique-
ness relative to the imaged surface. It is seldom considered in tra-
ditional light field and lumigraph rendering, since the source cam-
eras usually have common focal lengths and are located roughly
the same distance from any reconstructed surface. However, when
using unstructured input cameras, a wider variation in camera-to-
surface distances can arise, and it is important to consider image
resolution in the ray reconstruction process. To date, no image-
based rendering approaches have dealt with this problem.

Equivalent ray consistency: Through any empty region of
space, the ray along a given line-of-sight should be reconstructed
consistently, regardless of the viewpoint position (unless dictated
by other goals such as resolution sensitivity or visibility) (See Fig-
ure 5). This is not the case for unstructured rendering algorithms
that use desired-image-space measurements of “ray closeness” [7].
As shown in Figure 5, two desired cameras that share a desired ray
will have a different “closest” cameras, therefore giving different
reconstructions.

C1

C5

C4

C3

D

C2

C6

Figure 4: When cameras have different views of the proxy, their
resolution differs. Here cameras C1 and C5 see the same proxy
point with different resolutions.

C1

C2

D2

D1

Figure 5: When ray angle is measured in the desired view, one can
get different reconstructions for the same ray. The algorithm of
Heigl et al. would determine C2 to be the closest camera for D1,
and C1 to be the closest camera for D2. The switch in reconstruc-
tions occurs when the desired camera passes the dotted line.

Real-time: It is desirable that the rendering algorithm run at in-
teractive rates. Most of the image-based algorithms that we consid-
ered here achieve this goal. In designing a new algorithm to meet
our desired goals we have also strived to ensure that the result is
still computed efficiently.

Table 1 summarizes the goals of what we would consider an ideal
rendering method. It also compares our Unstructured Lumigraph
Rendering (ULR) method to other published methods.

4 Unstructured Lumigraph Rendering

We present a lumigraph rendering technique that directly renders
views from an unstructured collection of input images. The input
to our Unstructured Lumigraph Rendering (ULR) algorithm is a
collection of source images along with their associated camera pose
estimates as well as an approximate geometric proxy for the scene.

4.1 Camera Blending Field

Our real-time rendering algorithm works by first evaluating a “cam-
era blending field” at a set of vertices in the desired image plane
and interpolating this field over the whole image. This blending
field describes how each source camera is weighted to reconstruct
a given pixel. The calculation of this field is based on our stated

59

Goals lh96 gor96 deb96 pul97 deb98 pigh98 hei99 wood00 ULR
Use of Geometric Proxy n y y y y y y y y
Epipole Consistency y y y n n n y y y
Resolution Sensitivity n n n n n n n n y
Unstructured Input n resamp y y y y y resamp y
Equivalent Ray Consistency y y y y y y n y y
Continuity y y y y n y y y y
Minimal Angular Deviation n n y n y y n y y
Real-Time y y n y y y y y y

Table 1: Comparison of the algorithms lh96 [10], gor96 [5], deb96 [3], pul97 [13], deb98 [4], pigh98 [12], hei99 [7], wood00 [18], and ULR
according to our desired goals.

goals, and includes factors related to the angular difference between
the desired ray and those available in the given image set, estimates
of undersampling, and field-of-view [13, 12]. Given the blending
field, each pixel of the desired image is then reconstructed by a
weighted average of the corresponding pixels in each weighted in-
put image.

We begin by discussing how cameras are weighted based on an-
gle similarity. Then, we generalize our approach for other consid-
erations such as resolution and field-of-view.

A given desired ray rd, intersects the surface proxy at some
front-most point p. We consider the rays ri from p to the centers
Ci of each source camera i. For each source camera we define the
angular penalty, penaltyang(i), as the angular difference between
ri and rd. (see Figure 6).

C1 C2

D

p

Ck

penalty (2)
thresh

...ang

ang

Figure 6: The angle of the kth farthest camera is used as an angle
threshold.

When penaltyang(i) is zero we would like the blending weight
used for camera i, wang(i), to be at a maximum. To best satisfy
epipole consistency, this maximum weight should be infinite rela-
tive to the weights of all other cameras. It is unclear, however, when
wang(i) for a particular camera should drop to zero.

For example, one way to define a smooth blending weight would
be to set a global threshold threshang . Then, the weight wang(i)
could decrease from wmax to zero as penaltyang(i) increases from
zero to threshang . This approach proves unsatisfactory when us-
ing unstructured input data. In order to account for desired pixels
where there are no angularly close cameras, we would need to set
a large threshang . But using a large threshangwould blend too
many cameras at pixels where there are many angularly close cam-
eras, giving an unnecessarily blurred result.

One way to solve this of problem is to use a k-nearest neighbor
interpolation approach. That is, we consider only the k cameras
with smallest penaltyang(·)s when reconstructing a desired ray.
All other cameras are assigned a weight of zero. In this approach,
we must take care that a particular camera’s wang(i) falls to zero
as it leaves the set of closest k. We accomplish this by defining
an adaptive threshang . We define threshang locally to be the kth

largest value of penaltyang(·) in the set of k-nearest cameras. We
then compute a weight function that has maximum value wmax at
zero and has value zero at threshang .

The blending weight that we use in our real-time system is

wang(i) = 1 − penaltyang(i)

threshang
.

This weight function has a maximum of 1 and falls off linearly to
zero at threshang , and so consequently it does not exactly satisfy
epipole consistency. Epipole consistency can be enforced by multi-
plying wang(i) by 1/penaltyang(i) (or by other ways) at the cost
of more computation.

We then normalize the blending weights to sum to unity,

w̃ang(i) =
wang(i)∑k

j=1
wang(j)

.

This weighting is well defined as long as all k closest cameras are
not equidistant. For a given camera i, w̃ang(i) is a smooth function
as one varies the desired ray along a continuous proxy surface.

In addition to angular difference, we also wish to penalize cam-
eras using metrics based on resolution and field-of-view. Using
these various penalties, we define the combined penalty function as

penaltycomb(i) = α penaltyang(i) + β penaltyres(i)

+ γ penaltyfov(i)

where the constants α, β, and γ control the relative importance of
the different penalties. A constant can be set to zero to ignore a
penalty. We can then define w̃comb(i) using the k-nearest neighbor
interpolation strategy described above.
Resolution Penalty Given the projection matrices of the refer-
ence cameras, the proxy point p, and the normal at p, we can predict
the degree of resolution mismatch by using the Jacobian of the pla-
nar homography relating the desired view to a reference camera.
This calculation subsumes most factors resulting in resolution mis-
matches, including distance, surface obliqueness, focal length, and
output resolution.

For efficiency, we approximate this computation by considering
only the distances from the input cameras to the imaged point p. In
addition, we generally are only concerned with source rays ri that
significantly undersample the observed proxy point p. Of course,
oversampling can also lead to problems (e.g., aliasing), but proper
use of mip-mapping can avoid the need to penalize images for over-
sampling. Thus, the simplified resolution penalty function that we
use is

penaltyres(i) = max(0, ‖p − Ci‖ − ‖p − D‖),
where D is the center of the desired camera.
Field-of-View Penalty We do not want to use rays that fall out-
side the field-of-view of a source camera. We can include this con-
sideration using the penalty function:

penaltyfov(i) =

{
0 if ri within field-of-view
∞ otherwise ,

60

Figure 7: A visualized camera blending field. This example is from
the “hallway” dataset described in the results section. The virtual
camera is looking down the hallway.

which simply rejects all cameras that do not see the proxy point.
In order to maintain continuity, we adjust this penalty function so
that it smoothly increases toward ∞ as ri approaches the border of
image i.

With an accurate proxy, we would in fact compute visibility be-
tween p and Ci and only consider source rays that potentially see
p as in [4]. In our setting we use proxies with unit depth complex-
ity, so we have not needed to implement visibility computation. A
visibility penalty function would assign ∞ to completely invisible
points and small values to visible points. Care should be taken to
smoothly transition from visible to invisible regions [12, 14].

In Figure 7 we visualize a camera blending field by applying this
computation at each desired pixel. In this visualization, each source
camera is assigned a color. The camera colors are blended at each
pixel to show how they combine to define the blending field.

4.2 Real-time rendering

The basic strategy of our real-time renderer is to evaluate the cam-
era blending field at a sparse set of points in the image plane,
triangulate these points, and interpolate the camera blending field
over the rest of the image (see Figure 9). This approach assumes
that the camera blending field is sufficiently smooth to be accu-
rately recovered from the samples. The pseudocode for the al-
gorithm and descriptions of the main procedures appear below:

Clear frame buffer to zero
Select camera blending field sample locations
Triangulate blending field samples
for each blending field sample location j do

for each input image i do
Evaluate blending weight i for sample location j

end for
Renormalize and store k closest weights at j

end for
for each input image i do

Set current texture to texture i
Set current texture matrix to matrix i
Draw triangles with blending weights in alpha channel

end for

C1

C2

D

e1

e2

Figure 8: Our real-time renderer uses the projection of the proxy,
the projection of the source camera centers, and a regular grid to
triangulate the image plane.

Selecting Blending Field Samples We sample the camera
blending field at a sparse set of locations in the image plane. These
locations, which correspond to desired viewing rays, are chosen
according to simple rules.

First, we project all of the vertices of the geometric proxy into the
desired view and use these points as sample locations. To enhance
epipole consistency, we next add a sample at the projection of every
source camera in the desired view. Finally, we include a regular grid
of samples on the desired image plane to obtain a sufficiently dense
set of samples needed to capture the interesting spatial variation of
the camera blending weights.

Triangulating Samples We next construct a constrained De-
launay triangulation of the blending field samples (see Figure 8).

First, we add the edges of the geometric proxy as constraints on
the triangulation. This constraint prevents triangles from spanning
two different surfaces on the proxy. Next, we add the edges of the
regular grid as constraints on the triangulation. These constraints
help keep the triangulation from flipping as the desired camera is
moved.

Given this set of vertices and constraint edges, we create
a constrained Delaunay triangulation of the image plane using
Shewchuk’s software [16]. The code automatically inserts new ver-
tices at all edge-edge crossings.

Evaluating Blending Weights At each vertex of the trian-
gulation, we compute and store the set of cameras with non-zero
blending weights and their associated blending weights. Recall that
at a vertex, these weights always sum to one.

Multiple sets of weights may need to be stored at each sample
location if the sampling ray intersects the proxy multiple times. Tri-
angles adjacent to these samples may need to be rendered multiple
times on different proxy planes.

Drawing Triangles We render the desired image as a set of pro-
jectively mapped triangles as follows. Suppose that there are a total
of m unique cameras (k ≤ m ≤ 3k, where k is the neighbor-
hood size) with nonzero blending weights at the three vertices of a
triangle.

Then this triangle is rendered m times, using the texture from
each of the m cameras. When a triangle is rendered using one of
the source camera’s texture, each of its three vertices is assigned
an alpha value equal to its weight at that vertex. The texture ma-
trix is set to projectively texture the source camera’s data onto the
rendered proxy triangle. For sampling rays that intersect the proxy
multiple times, the triangles associated with those samples are ren-
dered once for each planar surface that they intersect, with the z-
buffer resolving visibility.

61

Figure 9: A visualized sampled color blending field from the real-
time renderer. Camera weights are computed at each vertex of the
triangulation. The sampling grid is 32 × 32 samples.

5 Results

We have collected a wide variety of data sets to test the ULR algo-
rithm. In the following, we describe how the data sets are created
and show some renderings from the real-time ULR algorithm. In all
cases, the size k of the camera neighborhood is 4, α = 1, β = 0,
and γ = 1 unless stated otherwise. A 16 × 16 size grid is used for
sampling the camera blending field.

Pond The pond dataset (Figure 11a) is constructed from a two
second (60 frame) video sequence captured with a digital hand-held
video camera. The camera is calibrated to recover the focal length
and radial distortion parameters of the lens. The cameras’ positions
are recovered using structure-from-motion techniques.

In this simple example, we use a single plane for the geometric
proxy. The position of the plane is computed based on the positions
of the cameras and the positions of the three-dimensional structure
points that are computed during the vision processing. Specifically,
the plane is oriented (roughly) parallel to the camera image planes
and placed at the average 1/z distance [1] from the cameras.

Since the cameras are arranged roughly along a linear path, and
the proxy is a single plane, the pond dataset exhibits parallax in only
one dimension. However, the effect is convincing for simulating
views near the height at which the video camera was held.

Robot The Robot dataset (Figure 11b) was constructed in the
same manner as the pond dataset. In fact, it is quite simple to build
unstructured lumigraphs from short video sequences such as these.
The robot sequence exhibits view-dependent highlights and reflec-
tions on its leg and on the tabletop.

Helicopter The Helicopter dataset (Figure 11c) uses the ULR
algorithm to achieve an interesting added aspect: motion in a lumi-
graph. To create this ”motion lumigraph”, we exploit the fact that
the motion in the scene is periodic.

The lumigraph is constructed from a continuous 30 second video
sequence in which the camera is moved back and forth repeatedly
over the scene. The video frames are then calibrated spatially using
the structure-from-motion technique described above. The frames
are also calibrated temporally by measuring the period of the heli-
copter. Assuming the framerate of the camera is constant, we can
assign each video frame a timestamp expressed in terms of the pe-
riod of the helicopter. Again, the geometric proxy is a plane.

During rendering, a separate unstructured lumigraph is con-
structed and rendered on-the-fly for each time instant. Since very
few images occur at precisely the same phase of the period, the
unstructured lumigraph is constructed over a time window. The

current time-dependent rendering program (an early version of the
ULR algorithm) ignores the timestamps of the images when sam-
pling camera weights. However, it would be straightforward to
blend cameras in and out temporally as the time window moves.

Knick-knacks The Knick-knacks dataset (Figure 11d) exhibits
camera motion in both the vertical and horizontal directions. In
this case, the camera positions are determined using a 3D digitizing
arm. When the user takes a picture, the location and orientation of
the camera is automatically recorded. Again the proxy is a plane,
which we position interactively by “focusing” [9] on the red car in
the foreground.

Car While the previous datasets primarily occupy the light field
end of the image-based spectrum, the Car dataset (11e) demon-
strates the VDTM aspects of our algorithm. This dataset consists
of only 36 images and a 500 face polygonal geometric proxy. The
images are arranged in 10 degree increments along a circle around
the car. The images are from an “Exterior Surround Video” (similar
to a QuicktimeVR object) database found on the carpoint.msn.com
website.

The original images have no calibration information. Instead,
we simply assume that the cameras are on a perfect circle looking
inward. Using this assumption, we construct a rough visual hull
model of the car. We simultaneously adjust the camera focal lengths
to give the best reconstruction. We simplify the model to 500 faces
while maintaining the hull property according to the procedure in
[15]. Note that the geometric proxy is significantly larger than the
actual car, and it also has noticeable polygonal silhouettes. How-
ever, when rendered using the ULR algorithm, the rough shape of
the proxy is largely hidden. In particular, the silhouettes of the ren-
dered car are determined by the images and not the proxy, resulting
in a smooth contour.

Hallway The Hallway dataset (Figure 11f) is constructed from a
video sequence in which the camera moves forward into the scene.
The camera is mounted on an instrumented robot that records its po-
sition as it moves. This forward camera motion is not handled well
by previous image-based rendering techniques, but it is processed
by the ULR algorithm with no special considerations.

The proxy for this scene is a six sided rectangular tunnel that is
roughly aligned with the hallway walls [8]. None of the cabinets,
doors, or other features are explicitly modeled. However, virtual
navigation of the hallway gives the impression that the hallway is
populated with actual three-dimensional objects.

The Hallway dataset also demonstrates the need for resolution
consideration. In Figure 10a, we show the types of blurring ar-
tifacts that can occur if resolution is ignored. In Figure 10b, we
show the result of using our simple resolution accommodation (β,
which depends on the global scene scale, was 0.05). Low resolu-
tion images are penalized, and the wall of the hallway appears much
sharper, with a possible loss of view-dependence where the proxy is
poor. Below each rendering in Figure 10 appears the corresponding
camera blending field. Note that 10b uses fewer images on the left
hand side of the image, which is where the original rendering had
most problems with excessive blurring. In this case, the removed
cameras are too far behind the viewer.

6 Conclusion and Future Work

We have presented a new image-based rendering technique for ren-
dering convincing new images from unstructured collections of in-
put images. We have demonstrated that the algorithm can be exe-
cuted efficiently in real-time. The technique generalizes lumigraph
and VDTM rendering algorithms. The real-time implementation
has all the benefits of structured lumigraph rendering, including

62

(a) (b)

Figure 10: Operation of the ULR for handling resolution issues: (a) shows the hallway scene with no consideration of resolution and (b)
shows the same viewpoint rendered with consideration of resolution. Beside each image is the corresponding sampled camera blending field.

speed and photorealistic quality, while allowing for the use of geo-
metric proxies, unstructured input cameras, and variations in reso-
lution and field-of-view.

Many of our choices for blending functions and penalty func-
tions are motivated by the desire for real-time rendering. More
work needs to be done to determine the best possible functions for
these tasks. In particular, a more sophisticated resolution penalty
function is needed, as well as a more principled way to combine
multiple, disparate penalties.

Further, nothing prevents our current implementation from sam-
pling the blending field non-regularly. An interesting optimization
would be to adaptively sample the blending field to better capture
subtle variations and to eliminate visible grid artifacts.

Finally, not all the desired properties are created equal. It is clear
that some are more important than others (e.g., equivalent ray con-
sistency seems less important), and it would be useful to quantify
these relationships for use in future algorithms.

References
[1] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenop-

tic sampling. SIGGRAPH 00, pages 307–318.

[2] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating static envi-
ronments using image-space simplification and morphing. 1997 Symposium on
Interactive 3D Graphics, pages 25–34.

[3] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from
photographs. SIGGRAPH 96, pages 11–20.

[4] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-mapping. Eurograph-
ics Rendering Workshop 1998.

[5] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. SIGGRAPH 96, pages 43–54.

[6] P. Heckbert and H. Moreton. Interpolation for polygon texture mapping and
shading. State of the Art in Computer Graphics: Visualization and Modeling,
1991.

[7] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool. Plenoptic modeling
and rendering from image sequences taken by hand-held camera. Proc. DAGM
99, pages 94–101.

[8] Y. Horry, K. Anjyo, and K. Arai. Tour into the picture: Using a spidery mesh
interface to make animation from a single image. SIGGRAPH 97, pages 225–
232.

[9] A Isaksen, L. McMillan, and S. Gortler. Dynamically reparameterized light
fields. SIGGRAPH ’00, pages 297–306.

[10] M. Levoy and P. Hanrahan. Light field rendering. SIGGRAPH 96, pages 31–42.

[11] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project: 3d scanning
of large statues. SIGGRAPH 2000, pages 131–144.

[12] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin. Synthesizing
realistic facial expressions from photographs. SIGGRAPH 98, pages 75–84.

[13] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and
Werner Stuetzle. View-based rendering: Visualizing real objects from scanned
range and color data. Eurographics Rendering Workshop 1997, pages 23–34.

[14] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg
Welch, Herman Towles, Brent Seales, and Henry Fuchs. Multi-projector dis-
plays using camera-based registration. IEEE Visualization ’99, pages 161–168.

[15] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Sny-
der. Silhouette clipping. SIGGRAPH 2000, pages 327–334.

[16] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator. First Workshop on Applied Computational Geometry,
pages 124–133, 1996.

[17] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. SIG-
GRAPH 99, pages 299–306.

[18] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp,
David H. Salesin, and Werner Stuetzle. Surface light fields for 3d photography.
SIGGRAPH 2000, pages 287–296.

63

(a) (b) (c)

(d) (e) (f)

Figure 11: Renderings from the real-time unstructured lumigraph renderer. (a) and (b) show two virtual views of 60-image lumigraphs taken
with a hand-held video camera. (c) shows two virtual views from a 1000-image moving lumigraph. (d) shows two virtual views of a 200-
image lumigraph taken with a tracked camera. Note the active light source in the scene. (e) shows a 36-image lumigraph and its associated
geometric proxy. (Original car images copyright c© eVox Productions. Used with permission.) (f) shows two virtual views of a 200-image
lumigraph. One virtual view is looking down the hallway, much like the input images, and one view is outside the hallway.

64

Mesh-Based Content Routing using XML

Alex C. Snoeren, Kenneth Conley, and David K. Gifford
MIT Laboratory for Computer Science

Cambridge, MA 02139

{snoeren, conley, gifford}@lcs.mit.edu

Abstract

We have developed a new approach for reliably multicasting time-
critical data to heterogeneous clients over mesh-based overlay
networks. To facilitate intelligent content pruning, data streams
are comprised of a sequence of XML packets and forwarded by
application-level XML routers. XML routers perform content-
based routing of individual XML packets to other routers or clients
based upon queries that describe the information needs of down-
stream nodes. Our PC-based XML router prototype can route an 18
Mbit per second XML stream.

Our routers use a novel Diversity Control Protocol (DCP) for
router-to-router and router-to-client communication. DCP reassem-
bles a received stream of packets from one or more senders using
the first copy of a packet to arrive from any sender. When each
node is connected to n parents, the resulting network is resilient
to (n − 1) router or independent link failures without repair. As-
sociated mesh algorithms permit the system to recover to (n − 1)
resilience after node and/or link failure. We have deployed a dis-
tributed network of XML routers that streams real-time air traffic
control data. Experimental results show multiple senders improve
reliability and latency when compared to tree-based networks.

1 Introduction

Our research is motivated by an interest in highly reliable data dis-
tribution technologies that can deliver information to end clients
with low latency in the presence of both node and link failures. Low
latency can be crucial for certain data that are extremely time crit-
ical. For example, real-time trading systems rely upon the timely
arrival of current security prices, air-traffic control systems require
up-to-the-second data on aircraft position and status, and gaps or
delay in live network video and audio feeds can be distracting. In

This research was supported in part by DARPA (Grant No. F30602-
97-1-0283). Alex C. Snoeren was supported by a National Defense
Science and Engineering Graduate (NDSEG) Fellowship.

such environments, even a sub-second pause in a data feed while a
delivery network retransmits or reconfigures may be unacceptable.
Recent studies have shown the Internet recovers from failures on a
much slower scale, often on the order of minutes [2, 20].

We observe that the achievable latency of a reliable data stream is
bounded by the packet loss-recovery mechanism. Packet losses can
be handled by retransmission or redundant coding. Retransmission
methods limit recovery time to the round-trip delay between com-
municating nodes. In order to avoid retransmission in the face of
loss redundant data must be sent.

This work is based upon the assumption that, in certain cases, the
value of reliable and timely data delivery may justify increased
transport costs if the cost increase allows us to meet a desired reli-
ability goal. Systems often try to avoid the delay penalty by using
loss-resistant coding schemes which encode redundant information
into the data stream. We extend this redundancy to network deliv-
ery paths and senders. Recent work in overlay networks has shown
that multiple, distinct paths often exist between hosts on the In-
ternet [2]. We attempt to leverage these redundant network links.
While some may consider this additional bandwidth wasteful, we
believe the system described herein presents an interesting and el-
egant method of utilizing additional network resources to achieve
levels of reliability and latency previously difficult to obtain.

Our basic approach is to construct a content distribution mesh,
where every node is connected to n parents, receiving duplicate
packet streams from each of its parents. The value of n is a config-
uration parameter that is used to select the desired trade-off between
latency, reliability, and transport costs. By maintaining an acyclic
mesh, this approach guarantees that the minimum cut of the mesh
is n nodes or independent links. Thus, a mesh is resilient to (n−1)
node or (n− 1) independent link failures (we say (n− 1) resilient)
without repair. If a mesh failure occurs, recovery algorithms restore
the mesh to (n − 1) resilience in a few seconds.

Our architecture is based upon an overlay network that transports
XML streams. An XML packet is a single independent XML docu-
ment [7]. An XML stream is a sequence of XML packets, and each
XML packet in a stream can have a different document type def-
inition (DTD). When clients join an overlay network they specify
an XML query that describes the XML packets they would like to
receive. It is the job of the overlay network to configure itself to
deliver the desired XML stream to a client at reasonable cost given
reliability goals. Queries are expressed in a general language such
as XQuery [11].

Our overlay network is implemented by XML routers. An XML
router is a node that receives XML packets on one or more input

65

goodelle
Appendix G:

links and forwards a subset of the XML packets it receives to each
output link. Each output link has a query that describes the por-
tion of the router’s XML stream that should be sent to the host on
that link. XML routers are components in a distributed publish-
subscribe network and implement the selective forwarding of XML
packets according to subscriptions described by queries.

XML has a number of advantages over a byte stream for multicast
delivery. First, XML permits the network to interpret client data
needs in terms of well-defined XML queries. Second, XML pack-
ets suggest what logical units of data will be processed together by
a client and thus can aid network scheduling. Third, many tools and
standards exist for XML making it easy for both the data originator
and receiver to build robust applications. Finally, our approach al-
lows applications and databases to push part of their processing into
the network fabric. We expect that query languages such as XQuery
will become standardized, allowing a single language to be used to
describe data requirements. This standardization will permit appli-
cations to program our network fabric to deliver the data they need
in a simple, consistent fashion.

The primary disadvantage of XML is often thought to be the in-
creased number of bytes required to represent the same information
in XML when compared to an application specific encoding. How-
ever, our experimental results suggest that conventional data com-
pression eliminates this disadvantage. While an XML stream must
be decompressed and recompressed at any router that wishes to do
query matching, a router that passes all packets to every client can
bypass the XML switch component entirely, and no decompression
or compression need be performed. Thus, routers can include a
fast-path for clients that subscribe to the unfiltered XML stream.

This paper makes three distinct, novel contributions:

• XML Routing. To the best of our knowledge, we describe the
first packet-based network XML router to support arbitrary
content routing. We believe that systems for XML routing
will be useful in a wide variety of contexts and will be ef-
ficient because XML wrapper overhead can be removed by
appropriate use of data compression technology.

• Mesh-based overlay networks. We describe the first over-
lay network to use multiple, redundant paths for simultane-
ous transport of multicast streams. Our mesh approach offers
better latency performance than tree-based approaches.

• Diversity Control Protocol. We describe a novel protocol that
uses source-independent sequence numbers to reliably recon-
struct a sequenced packet stream from multiple sources. DCP
reduces latency and improves reliability when compared with
conventional single-sender approaches.

The remainder of this paper describes our current XML routing in-
frastructure in the following sections:

• Previous work (Section 2)

• Architecture of our XML routing system (Section 3)

• Mesh algorithms and distribution protocol (Section 4)

• Experimental results and our air traffic control application
(Section 5)

• Issues involved in routing XML over a mesh (Section 6)

• Conclusions (Section 7)

2 Previous work

Our work on XML routers and DCP builds on a large body of past
work in reliable multicast and overlay networks. We consider re-
lated work in four areas: reliable multicast, overlay networks, re-
dundant coding and transmission schemes, and publish-subscribe
networks.

2.1 Reliable multicast

Reliable multicast systems send a stream of packets to a set of
receivers. Reliable multicast systems are often built on IP Multi-
cast [3]. IP Multicast packets are duplicated by the network layer
as late as possible to minimize the network resources consumed to
deliver a single packet to multiple receivers. Acknowledgments are
required to make IP Multicast reliable. If a packet is damaged in
transmit or is lost, either a receiver will send a negative acknowl-
edgment to the sender [14, 22, 27, 41, 43], or the lack of a positive
acknowledgment from a receiver will cause the sender to retrans-
mit [17, 22, 43]. Express [15] is a single-source multicast system
that simplifies IP Multicast in the face of multiple data sources but
is still integrated with the network fabric.

Of particular note is RMX [12], which shares similar goals with
our work. RMX provides real-time reliable multicast to hetero-
geneous clients through the use of application-specific transcoding
gateways. For example, it supports re-encoding images using lossy
compression to service under-provisioned clients. By using self-
describing XML tags, our architecture allows similar functionality
to be provided in a general fashion by having clients with differ-
ent resource constraints subscribe to different (likely non-disjoint)
portions of the data stream.

2.2 Overlay networks

An overlay network is a virtual network fabric that is implemented
by application level routers that communicate with each other and
end clients using normal IP network facilities. Overlay networks
typically use reliable point-to-point byte streams, such as TCP,
to implement reliable multicast. The goal of an overlay network
is typically to provide increased robustness [2, 35] or additional,
sophisticated network services, such as wide-area stream broad-
cast [16, 30, 37], without underlying network assistance. In fact,
network operators may be unaware that such services are running
on their network.

One advantage of building our network as an overlay is that it
is easy to modify and deploy without the cooperation of network
providers. We have adopted the use of overlay networks as an ef-
fective way to build a robust mesh that can effectively route XML
packets. End-system-multicast [13] is an overlay-based multicast
system that constructs meshes during spanning tree discovery but
does not use redundant mesh links for information delivery.

2.3 Redundant encoding and transmission

Loss-tolerant encoding schemes (often termed erasure, tornado, or
forward error correcting (FEC) codes) use redundant information
to support the reconstruction of a data stream in the face of a cer-
tain amount of packet loss [25]. For example, in Digital Fountain’s
Meta-Content protocol [9] packets are encoded to allow a receiver

66

to recover a data stream even if a certain fraction of Meta-Content
packets are never received.

Our approach to redundancy is based on sender and channel diver-
sity while loss-tolerant encoding schemes typically use only packet
diversity [9, 33]. We use channel diversity because experimen-
tal data suggests that Internet packet errors are highly path depen-
dent [2, 29, 35]. We use sender diversity because in single-sender
systems a sender failure is likely to cause a stream gap during recov-
ery [30]. Based on these assumptions, we believe that, with appro-
priately configured levels of mesh redundancy, sender and channel
diversity can provide lower loss rates and latency than packet diver-
sity, albeit at a higher cost.

Several previous systems have leveraged channel diversity, sender
diversity, or both in an end-to-end fashion. Dispersity routing [24]
and IDA [31] split the transfer of information over multiple net-
work paths to provide enhanced reliability and performance. Sim-
ulation results and analytic studies have shown the benefits of this
approach [5, 6]. In addition, tornado codes have been suggested
to combine parallel downloads to improve reliability and perfor-
mance [8]. Application-level dispersity routing, IDA, and parallel
downloads use multiple network paths but do not provide for any
loss recovery along a single path within the network fabric. Our
use of application-level routers allows us to perform loss recovery
inside of the network fabric and, thus, improve loss resilience. Fur-
ther, the block encoding scheme used by Digital Fountain may add
additional latency during decoding. We discuss our loss resilience
results in Section 5.

2.4 Publish-subscribe systems

Publish-subscribe networks, such as Tibco’s TIBTMRendezvous
[28], Elvin4 [36], Siena [10], Gryphon [4], and XMLBlaster [1]
permit receivers to specify the portion of a data stream that they
would like to receive. Receivers typically subscribe to messages
using a query that summarizes their interests. Streams may be en-
coded such that the same content, but in varying levels of fidelity,
may be requested by each client [26, 42]. Siena and Gryphon both
provide distributed implementations of singly connected graphs for
information distribution, but neither provides XML-based routing.

XMLBlaster [1] is a publish-subscribe system based on XML
packet streams, but it only permits queries over a specific header
field. Our semantics permit queries over any field in an XML
packet. We believe that the overhead of making each XML packet
a fully formatted document is a small price to pay for the result-
ing flexibility and rational query semantics. This is especially the
case when data compression causes the markup overhead in each
XML packet to become negligible. To our knowledge, no existing
stream-based publish-subscribe network uses redundant meshes for
reliability or performance enhancement.

3 Resilient mesh networks

As shown in Figure 1, a typical overlay network for routing an XML
stream contains one or more root routers (R1-R2), a variable num-
ber of internal routers (I1-I3), and a variable number of edge clients
(C1-C3). Root routers are the origin of data and are assumed to
have independent means of generating their XML stream. Internal
routers receive the XML stream from their parent routers and for-

R1 R2

I3I2I1

C1 C2 C3

Figure 1: A mesh network comprising root routers (R1-R2), inner
XML routers (I1-I3) and clients (C1-C3).

ward elements of the stream to their children as required. Clients
connect to routers and provide a query that describes the portions
of the XML stream they would like to receive.

The content carried by routers in a mesh can be statically or dynam-
ically configured. Typically, with static configuration the internal
routers carry all of the XML packets available from the root routers.
Thus, with a static approach to content configuration clients have a
wide choice of routers that can service their request without recon-
figuration delay. Unfortunately, such a mesh requires a fixed band-
width capacity throughout. We can leverage the expressive power
of XML to better control bandwidth usage.

Dynamic content configuration allows a router to carry only the
packet stream necessary to service its children. In this case, a router
disjoins all of the queries it receives from its children and forwards
the resulting query to its parent routers. Note that since each router
combines the queries of each of its children when subscribing to
its parent routers, each router need only store queries for its imme-
diate children. This results in significant bandwidth savings when
clients are uninterested in the full contents of the data stream. The
disadvantage of this scheme is that the mesh may not have a suf-
ficient number of routers that currently carry the traffic needed by
a node searching for an additional parent during mesh construction
or repair. If a client requests information that is not available in that
portion of the mesh, there will be a delay while the mesh readjusts
to supply the required information although this additional startup
delay is tolerable in most situations. During reconstruction, the data
should be available from the current parent set. During initializa-
tion, it simply adds a slight additional startup latency.

Clients wishing to join an (n − 1)-resilient mesh perform four dis-
tinct operations: (1) composing an XML query that describes the
data desired, (2) contacting n existing routers that can service the
query, (3) sending these n routers the XML query it has composed,
and (4) receiving the XML stream described by the query. One par-
ticular algorithm for discovering routers is described in Section 4.

Each router includes a query table that describes the portion of the
XML stream each of its children wishes to receive. Thus, each
router functions as a splitter that takes a single XML stream and
refines it for each child. Often a child is only interested in a subset
of a stream (such as all air traffic landing in Seattle). Expressing this
desire to routers saves last-mile bandwidth and end-host processing.

67

Our architecture also admits XML combining routers. A combining
router merges XML feeds from different sources into a single XML
feed. This can be accomplished by simply forwarding unmodified
packets from both sources, or it can involve application-specific
processing. For example, in our air traffic control application we
are investigating merging our XML stream of air traffic data with
an XML stream of runway conditions.

We will call a node k-resilient when any combination of k other
nodes and independent links in the mesh can fail and the node will
still receive its XML stream. We say a mesh is k-resilient when
all of its nodes are k-resilient. The level of resilience in a network
can vary according to the needs of end clients. Although we hereto-
fore have described a uniform mesh architecture with a fixed router
fan-in of n, it is entirely possible to build meshes with non-uniform
fan-in. The only constraint is that in order to assure a desired level
of resilience all the way to the root, the resilience of a child’s par-
ents must be equal to, or greater than the child’s desired resilience.
For example, one could build a core network that is 2-resilient, and
certain clients could choose to be 1-resilient. The failure of a core
router will most likely reduce the resilience level of many periph-
eral routers and clients until the mesh can reconfigure, but the mesh
will continue to provide service to all clients except those clients
directly connected only to the failed node. Thus, in certain circum-
stances, it may make sense to improve the resilience only of key
portions of a network that provide service to many clients. We are
investigating issues surrounding optimal mesh configuration.

4 Algorithms and protocols

An XML router implements three key algorithms and protocols:

• XML router core. The XML core is the engine that receives
and forwards packets according to queries. Its job is to effi-
ciently evaluate each received XML packet against all output
link queries.

• Diversity Control Protocol (DCP). DCP implements resilient
mesh communication by allowing a receiver to reassemble a
packet stream from diverse sources.

• Mesh initialization and maintenance. A set of algorithms au-
tomatically organizes routers and clients into a mesh and re-
pairs the mesh when faults occur.

4.1 XML router core

Figure 2 shows the internal structure of an XML router. An XML
router consists of three major components:

• An input component that acquires XML streams for presen-
tation to the XML switch. The input component is respon-
sible for maintaining DCP connections to the parents of the
router and implementing the mesh initialization and recon-
figuration algorithms. In addition, the input component im-
plements data decompression. Our input component can also
connect to TCP XML streams for compatibility.

Although, in many instances, the input component will ac-
quire a single XML stream for routing, an input component
could connect to distinct meshes and merge multiple XML
streams for routing. The input component is also responsible
for forwarding the disjunction of its link queries to its parents.

DCP TCP

Input

XML
Switch

Output

DCP TCP

Link
Query

Figure 2: The internal architecture of an XML router comprises the
input component, XML switch, and output component. Output link
queries control XML packet forwarding.

• An XML switch that compares received packets against link
queries, and forwards matching packets to the requesting
links. An efficient XML switch attempts to combine distinct
link queries into a single state machine that matches all of the
link queries in a single pass over an incoming packet.

• An output component that forwards packets on output links
using DCP. In addition, the output component is responsible
for handling join requests from prospective children and im-
plements link-based data compression. Our output compo-
nent additionally can produce TCP XML streams for potential
compatibility with non-DCP children.

4.2 Diversity control protocol

The Diversity control protocol (DCP) is so named because of the in-
herent sender diversity that it implements. The essential idea behind
DCP is that a receiver can reassemble a packet stream from diverse
senders. In DCP, the same stream of packets is sent to a receiver by
multiple sources where the desired level of redundancy may vary
between nodes in a mesh. As shown in Figure 3, a DCP receiver
reassembles the packet stream using the first error-free packet re-
ceived from any source.

4.2.1 Sequencing

Proper in-order packet stream reassembly requires that all DCP
packets be assigned identifiers that admit a total ordering and that
the total ordering must be known to the participants. DCP further
requires identifiers obey the following invariants:

• For a given content stream, packet identifiers must be associ-
ated only with packet content and not be sender specific. This
allows receivers to properly reassemble a stream based upon
identifiers alone.

• Since packets may travel through a variable number of inter-
mediate router hops, the identifiers with a particular stream
must be selected at root routers and remain identifiable

68

A B

C

3

1
3

2

1

2

3

Figure 3: The Diversity Control Protocol (DCP) reassembles a
packet stream from diverse senders.

throughout the mesh. Thus, the set of root routers for a partic-
ular stream must originate the same packet stream and assign
the same identifiers to the same packets. This must be true
even if the root routers do not generate the stream at precisely
the same time or rate.

• Receiver identifier processing must admit gaps. Since inter-
mediate routers may not forward packets containing content
that was not requested by a particular receiver, the identifiers
of these packets will not be received.

Our approach to satisfying these three invariants is to assign a
monotonically increasing 32-bit application serial number (AN) to
every DCP packet when the packet is created at a root router. Ev-
ery router that forwards DCP packets maintains the last packet AN
sent on each output link. The last AN sent on a link is included in
the next packet along with the next packet’s current AN number.
Including a client-specific previous AN in each packet permits a re-
ceiver to reassemble the stream of packets from a sender in the pres-
ence of missing ANs. In our application, missing ANs are caused
by filtered XML packets.

While routers may remove packets from the datagram stream, DCP
itself is a reliable transport protocol. Hence, any missing datagram
(as indicated by a hole in the AN sequence chain) will be retrans-
mitted. In order to maintain redundancy invariants throughout the
mesh, retransmissions are requested at each hop rather than end-
to-end. Similarly, packets are buffered and transmitted in-order at
each hop. This ensures that every node can consider each parent
an independent source of ordered datagrams. We return to consider
the implications of out-of-order forwarding in section 6.4.

DCP currently uses UDP as a transport mechanism to facilitate de-
ployment at the application layer. Distinct DCP streams are cur-
rently transmitted on separate UDP ports. In our application, one
DCP packet is used to transport one XML packet. This is possible
because our XML packets are relatively small. If XML packets do
not fit into a single IP packet envelope, an AN could describe both
the XML packet number being transmitted and the IP packet within
the XML packet. The important invariant is that an AN be based
upon the content of a packet and not on when or by whom it was
generated.

Ver. Flags Checksum

AN

Previous AN

Figure 4: DCP Packet Header

Figure 4 shows the layout of a DCP packet. In addition to the ANs
we have already mentioned, a DCP packet includes a 4-bit version
number to allow DCP to evolve and a set of 8 bit flags. The flags
permit a sender to request an acknowledgment, a receiver to send an
acknowledgment or request a retransmission, and for the exchange
of keep-alive and connection-establishment and tear-down informa-
tion. The entire packet is covered by a 16-bit checksum which may
be optionally disabled if encapsulated in UDP or when carrying
streams insensitive to corruption.

While our use of DCP is as a datagram protocol, DCP is equally
well-suited for the transmission of byte streams. A bit in the flags
field is used to indicate that DCP is operating in stream mode.
When used as a stream protocol, the AN simply refers to the se-
quence number of the first byte of the datagram, as in TCP. Simi-
larly, the previous AN refers to the last byte of the previous packet
in stream mode. Note that this construction allows for fragmenta-
tion or reframing of DCP packets if desired, albeit at the expense of
additional complexity and buffering at the receivers. Additionally,
if multiple root servers are in use each server must take care to se-
quence the data identically. Datagram and streaming mode cannot
be used during the same DCP connection.

4.2.2 Retransmission

When a receiver joins multiple DCP senders, it waits for the first
packet to arrive from any one of the hosts and uses the AN of this
packet as its current AN. Packets that are subsequently received
with a lower AN than the current AN are discarded and packets
that are received with an AN in the future are buffered. A packet
with the current AN in the previous AN field is considered the next
packet in the reassembled stream and the current AN is updated. If
a receiver does not receive an appropriate packet after a fixed in-
terval, it sends a negative acknowledgment (NACK) to all senders
with its current AN. This retransmission is sent only to the receiver
requesting it. In a fashion similar to TCP’s fast retransmit, a NACK
is generated after a much shorter timeout if a packet with a subse-
quent AN is received, indicating either a lost or reordered packet.
This NACK serves as a request for all senders to retransmit all pack-
ets after the receiver’s current AN.

Assuming a regular mesh construction (equal numbers of parents
and children), the negative acknowledgment process does not suffer
from ACK implosion even with high degree. An individual receiver
only generates a NACK if an AN is not received from any of its
parents. Due to the (assumed) pairwise independence of packet
loss between distinct senders and receivers, this probability drops
exponentially with degree as discussed in section 5.1.2. Hence, the
probability that a sender receives any NACKs at all decreases with
increasing degree, avoiding the NACK implosion problem.

69

Senders transmit packets in order to a receiver and request an ac-
knowledgment from a receiver from time to time. Our current im-
plementation requests positive acknowledgment after a fixed num-
ber of packets has been sent. A receiver responds to a request
for acknowledgment with an acknowledgment that contains the last
AN (or last byte in streaming mode) it has processed. This serves
to limit the amount of buffering required at each node and allows
for rapid resynchronization of senders and receivers. If the current
sender has not yet sent that AN (byte), it squelches its transmissions
until after that AN (byte). A receiver can also send an unsolicited
acknowledgment to squelch a sender that is behind. In contrast, if
a receiver continually fails to respond to acknowledgment requests,
or persistently lags behind the sequence space (indicating insuffi-
cient bandwidth between sender and receiver), the connection is
terminated. The receiver must then reconnect to a new point in the
mesh (presumably with a higher-bandwidth link).

4.3 Mesh formation and maintenance

A mesh begins life as a set of root routers that are all capable of sup-
plying an XML stream of interest. We assume that failures of root
routers are independent and, thus, each has an independent means
of deriving the XML stream. As noted above, however, roots must
be uniform in their DCP packetization and sequence number selec-
tion. Additional roots may be added to a mesh at any time provided
they have a mechanism to synchronize their content stream with the
existing root nodes.

Mesh discovery is outside the scope of this document, but one
method of distributing the set of root nodes for a particular content
stream is through DNS. All of the IP addresses for the root routers
for a service could be stored in a DNS address record. For example,
stream.asdi.faa.gov might be a DNS name that maps to a
set of root routers that supply an XML stream of air traffic control
data for North America.

4.3.1 Adding routers and clients

When a new internal router is added to a mesh, it can either be
statically configured with a set of parents or the new router can
select its own parents based upon performance experiments. A wide
variety of automatic configuration algorithms can be used to form
the mesh depending on the particular desires of the node. These
may vary widely depending upon whether the mesh is controlled by
a single administrative entity concerned with overall characteristics
of the mesh such as its resilience or depth, or the new node has a
more specific purpose. Clients join the mesh in the same fashion.

Rather than specify a particular algorithm or policy, we admit a host
of possibilities by providing a set of mesh primitives that new nodes
can use to discover the topology of the mesh and locate themselves
within it. Each router supports the following primitives:

• Join (Q): A new node is added as a child of the router with
query Q provided the current node is willing to admit a child
with such a query.

• Children (Q): The router responds with its children that sub-
scribe to a subset of Q. A full child list may be elicited by
specifying a query that matches the entire stream.

• Parents: The router responds with its parent set.

1. Initialize the set S to be the root routers.

2. For each node in S, send a join request and
remove the node from S.

3. If a node accepts the join, add it to the parent
set P . If n nodes are in P , quit.

4. If a node declines the join, ask it for a list of its
children, and add them to S.

5. If S is not empty, go to Step 2.

Figure 5: Parent selection algorithm. Each node runs this algorithm
to construct an (n − 1)-resilient mesh.

Using these three operations, it is possible for a new node to com-
pletely walk a mesh to determine its optimal location. We note that
the optimum location may vary depending on the particular desires
of the joining node. We have currently implemented a very simple
algorithm for automatic parent selection for a client seeking (n−1)
resilience shown in Figure 5.

This simple algorithm seeks to find a set of routers that are closest
to the root routers and uses the timing of responses to select among
candidates. The algorithm also assumes that potential parents are
configured to reject join requests when they are at maximum de-
sired capacity or they do not wish to service a requested query. We
contemplate additional research on improved algorithms that are
based upon both depth in the mesh and observed packet latency to
select optimal parents for a new child.

Routers may refuse to serve as parents for policy reasons, if they
are not receiving the portion of the XML feed necessary to service
a new child’s query, or if they are over-subscribed. If a prospective
parent is not receiving part of the feed necessary for a new child, the
prospective parent may be configured to push an expanded query up
to its parent, thus propagating the information request up the mesh.

4.3.2 Mesh repair

Our mesh repair algorithm recovers from parent failures. If one
of the parents of a node fails, the node actively attempts to join a
new parent. The method used to obtain a new parent is currently
identical to that used to obtain initial parents with one caveat. To
guarantee that a mesh is acyclic, each router maintains a level num-
ber that is one greater than the maximum level of all of its parents.
A router’s level number is established when a router first joins the
network. During mesh recovery, a router will only join parents that
have a level number that is less than its own level number. If this is
not possible during recovery, then a router must disconnect from all
of its children and do a cold re-initialization to return to its desired
level of resilience.

Our repair algorithm recovers (n − 1) resilience of the mesh if a
non-root router fails. As discussed earlier, (n − 1) resilience is a
fundamental property of any acyclic mesh where each child has n
parents. This can be seen by forming an acyclic graph that is a dual
of a mesh. In this dual graph each child is represented as a vertex
that has directed edges to all of the child’s parents. The min-cut of
this graph is n vertices or edges if each vertex has out degree n.
Thus (n − 1) nodes or (n − 1) distinct paths can fail and a node
will still be connected to a root.

70

Due to occasional internal node failures, a mesh repaired using our
algorithm will have a tendency to flatten out over time as nodes
are forced to select parents with lower level numbers during each
repair process. If the mesh structure is to serve extremely long-
running streams, it may be necessary for nodes to occasionally re-
move themselves from the mesh and select an entirely new location
in order to preserve the depth of the mesh and prevent overloading
of root nodes. We have not yet explored efficient algorithms for
determining when to start this process.

5 Evaluation

We have developed two separate implementations of our XML
router. Our full-featured, multi-threaded Java implementation uses
DCP for router-to-router and router-to-client communication. We
have also implemented a prototype high-performance router based
on Click [19]. The goal of our Java implementation was to ad-
equately support our air traffic control application and it does
not attempt to maximize absolute performance. In contrast, the
Click router attempts to achieve production-grade performance us-
ing freely available XML parsing technology. Below, we report
our experiences with both routers. We are mainly interested in un-
derstanding how routers will behave in a mesh under varying con-
figurations. Thus, our evaluation focuses on the effects of mesh
redundancy on DCP reliability and performance. We also provide
performance results from our Click-based XML router.

5.1 DCP performance

The Diversity Control Protocol has several attractive features in-
dependent of the format of the data stream. In particular, DCP-
based meshes can achieve substantially lower effective loss rates
and latency than tree-based distribution networks. Further, the re-
dundancy can be utilized to absorb unexpected decreases in the link
capacity between nodes. In this section, we quantify these effects
using our Java XML router. All results presented in this section rep-
resent the average of several experiments each consisting of 1000
to 10000 XML-encoded ASDI packets.

5.1.1 Experimental design

The experimental setup consisted of four 600MHz PIIIs, two run-
ning Linux 2.2.14, and two running FreeBSD 4.0. Each machine
used 100Mbit Intel EtherExpress Pro100 Ethernet controllers and
128 Mbytes of memory. The roots and all intermediate XML router
nodes were run on one Linux machine using Sun’s JDK version
1.3. The XML client node was run on the other Linux machine,
also with Sun’s JDK version 1.3.

For each experiment, the root node received an XML feed contain-
ing a 1Kbyte per second substream of the live ASDI flight data
described in the following section. While each node in our experi-
mental topology requests the entire test XML stream, it does so by
specifying an XML query predicate, hence each packet is parsed
by the intermediate nodes as part of the forwarding process. The
intermediate nodes connect to the root over the loopback interface,
so there was no packet loss. The desired link loss rates between
intermediate and client nodes were obtained by routing each DCP
connection through one of the FreeBSD machines which passed
the packets through an appropriately configured Dummynet [32]
tunnel.

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ffe

ct
iv

e
lo

ss
 r

at
e

at
 c

lie
nt

Avg. per-parent loss rate

n = 1
n = 2
n = 3
n = 4

Figure 6: Loss rates experienced by a client as a function of indi-
vidual parent loss rates and the number of parents.

The one-way latency between the client and parent nodes was negli-
gible (0.1ms) with respect to the millisecond granularity of the Java-
based timing mechanisms we used to measure packet latency. Vari-
ability in the observed latency of XML packets can be attributed
both to the inherent non-uniformity of XML parsing times and to
thread scheduling uncertainties of the JDK.

5.1.2 Redundancy reduces loss exponentially

We assume that packet loss is independent across parents. This
assumption is false if a problematic portion of the communication
path to a set of parents is shared. In our ideal model, if each parent
has an identical loss rate, p, a node with n parents should expect
a combined loss rate of pn. Figure 6 verifies this experimentally,
showing the DCP loss rate experienced at clients with 2, 3, and 4
parents where the loss rate at each parent is independently identi-
cally distributed (i.i.d.) with uniform probability p varying from
[0, 0.5].

For a traditional tree-based distribution network, the loss rate ex-
perienced at the client corresponds directly to the loss rate of its
parent. The graph shows, however, that a mesh topology is able to
provide acceptable delivery rates over even extremely lossy chan-
nels. A node with four parents can expect a loss rate of less than
5% even if each of the parents individually experiences a loss rate
of up to 45%.

Most Internet links do not experience extremely high loss rates. In
fact, typical long-term average loss rates are on the order of 2–5%
with substantially higher burst rates [29]. In such cases, a mesh
with n = 2 still limits the loss rate at the client to substantially less
than 1%. Decreased loss rate is not the only gain from multiple
parents, however.

5.1.3 Latency

Even in cases where acceptable loss rates can be provided by a tree-
based network (reliability may be assured by retransmission), sig-
nificant improvements in latency can be achieved by increasing re-
dundancy. In DCP, loss is not detected until the receipt of a later
packet since each individual packet is not acknowledged. However,

71

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

A
vg

. l
at

en
cy

 a
t c

lie
nt

 (
m

s)

Avg. per-parent packet loss rate

n = 1
n = 2
n = 3
n = 4

Figure 7: Average per-packet latency from root to client as a func-
tion of individual parent loss rates and the number of parents.

0

5

10

15

20

25

0% 1% 2% 3% 4% 5%

A
vg

. l
at

en
cy

 a
t c

lie
nt

 (
m

s)

Effective loss rate at client

n = 1
n = 2
n = 3
n = 4

Figure 8: Average per-packet latency from root to client for a range
of effective loss rates. Effective loss rates for each level of redun-
dancy are taken from Figure 6.

because we expect the Internet to reorder packets [29], a packet is
not assumed lost until some time after its successor arrives (cur-
rently 5ms).

In order to magnify the effects of retransmissions in a LAN envi-
ronment with short round-trip times, our test XML feed was specif-
ically constructed to have relatively long inter-packet intervals. In
our experiments, a single retransmission adds approximately 300ms
to the latency for the lost packet. In practice, streams are likely to
have a shorter inter-arrival period but longer RTTs, resulting in a
similar effect. As can be seen in Figure 7, packet loss significantly
impacts the average packet latency at the client for non-redundant
configurations. Meshes with higher levels of redundancy perform
much better.

A redundant topology performs even better than the effective loss
rate of Figure 5 suggests. This is because clients with multiple par-
ents use the first copy of each XML packet they receive. In general,
the expected minimum of multiple samples from any distribution

S

I

C

TCP

S1 S2

I2I1

C

DCP

S

C

Erasure Coding

Figure 9: Experimental multi-tier topologies. A two-hop TCP path
with a TCP splice in the middle, a 1-resilient DCP mesh of depth
two, and an erasure code using two disjoint paths of length two with
simple forwarding at the intermediate nodes. The loss rates on all
links is identical.

is guaranteed to be at least as good as expected value of a single
sample. Figure 8 shows the average latency for several levels of
redundancy with respect to effective loss rates.

5.1.4 Multi-tier meshes

The improvement in latency and throughput becomes even more
dramatic as the the depth of the mesh increases. We demonstrate
this by measuring the throughput performance of a two-tier mesh
using both DCP and TCP and analytically derive the expected per-
formance of a carousel-based erasure code scheme. As shown in
Figure 9, our experimental 1-resilient DCP mesh has five nodes:
two servers delivering identical streams, two intermediate nodes,
and one client. In the case of TCP, the mesh has only three nodes:
a server, client, and one intermediate node that splices the two sep-
arate TCP connections. In both cases, the client, server, and in-
termediate nodes are connected with point-to-point Ethernet links.
We analyze the performance of erasure coding over a hypothetical
topology consisting of a server and client connected by two disjoint,
two-hop paths. The nodes in the middle simply forward packets
and, unlike TCP and DCP, do not request retransmissions of lost
packets.

In our experiments we used Dummynet to limit the bandwidth of
each link to 75Kbits per second and set the server to transmit data in
262-byte bursts at a rate of 19Kbits per second—significantly under
link capacity. Each link in the mesh has a one-way latency of 10ms.
Figure 10 shows the throughput observed at the client as the loss
rate is adjusted for all links uniformly. Note that TCP’s throughput
drops rapidly as the loss rate increases. The redundant links are of
no use to TCP as a duplicate TCP connection on a redundant path
would suffer the same fate. DCP, on the other hand, is able to utilize
both links at the same time to provide successful transfer at much
higher loss rates.

We note that in the case of multi-hop networks with sufficient band-
width, DCP outperforms carousel-based erasure coding techniques
such as those used by Digital Fountain [9]. Such schemes do not
retransmit lost packets. Instead, they encode the data stream at a
fixed rate using an erasure code which enables any lost packets to
be recovered by simply receiving an additional number of encoding

72

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

T
hr

ou
gh

pu
t (

by
te

s
pe

r
se

co
nd

)

Avg. per-parent packet loss rate

DCP
TCP

Erasure Coding

Figure 10: Observed throughput of a two-tier mesh with uniform
link loss rates using both 1-resilient DCP and TCP. The stream is
served in 262-byte chunks at a rate of 2381 bytes per second. DCP
downloads utilize two parents at each tier while TCP can support
only one at each tier. We also plot the expected performance of
a simple carousel-based erasure code using two disjoint, two-hop
paths.

packets. A maximum-distance-separable erasure code requires that
the client simply receive as many packets as comprised the origi-
nal data stream, regardless of which packets they are. In practice,
many codes (including those used by Digital Fountain) are not quite
maximum-distance-separable, requiring a few additional packets.

Because carousel erasure coding is typically deployed end-to-end
with no retransmissions within the network, the loss rates at each
hop are cumulative. Whereas, DCP reassembles the stream and re-
transmits a full set of redundant packets at each tier of the mesh.
A naive carousel-based distribution network could support appli-
cations such as ours by ensuring each packet contains all the data
necessary to decode the current input packet plus any additional
redundant data required to support the erasure code.

A carousel erasure code can utilize redundant links by sending
an encoded version of each data packet down all available links.
Hence, we can calculate an upper bound on the performance of
such an erasure code by assuming only one packet of any encoding
set must be received. Given a distribution network with n separate
paths, each comprised of l hops with link loss rate p, it is easy to
see that each path successfully delivers the packet with probability
(1 − p)l. In the best case, each data packet can be successfully de-
coded by the client if only one of the encoding packets is received,
which occurs with probability 1 − (1 − (1 − p)l)n. To recover
lost packets, the client must receive additional encoding packets
which are lost with the same probability. Hence, the throughput of
such a scheme can be computed by simply multiplying the input
data rate by the effective reception rate. Using this formula, Fig-
ure 10 shows the expected performance of a sufficiently low-rate
maximum-distance-separable erasure code over the two-tier topol-
ogy shown in Figure 9.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
up

ut
 r

at
e

(p
ac

ke
ts

 p
er

 s
ec

on
d)

Input rate (packets per second)

16
8
4
2
1

Figure 11: Forwarding rates for a Click-based XML router with a
varying number of children. Each child requested the entire input
XML stream specified through a trivial XPath expression.

5.2 XML routing performance

Figure 11 shows the forwarding rates achieved by our Click XML
router installed as a kernel module. We measured the forwarding
capacity by generating a constant stream of identical UDP packets
containing a 262-byte XML-encoded ASDI flight update (similar to
the one in Figure 12) at a fixed rate and sending them to our XML
router. The router parses each XML packet, applies the appropri-
ate child predicates, and forwards the packet to the children with
matching predicates.

The tests were conducted on an 800Mhz dual-processor Intel PIII
in uni-processor mode with two Ethernet controllers: an on-board
Intel EtherExpress PRO 100Mbit/s PCI controller and an Intel
PRO/1000 Gigabit Ethernet PCI card. We use uni-processor mode
because our XML parsing code is not known to be SMP-safe. Pack-
ets were received on the 100Mbit interface and forwarded out the
Gigabit interface. Because Click does not support polling on the
100Mbit controller packet input was interrupt driven.

The maximum loss-free forwarding rate varies with the number of
children. Additional children add processing overhead for addi-
tional link queries. With only one client and a simple query expres-
sion, our implementation is able to forward slightly more than 9,000
262-byte packets per second, or about 19 Mbit/second. The more
complicated the packet and expression, the slower the forwarding
rate.

In order to better understand the impact of query complexity, we
timed the XML parser and query evaluator separately. Our Click
XML router uses the Gnome XML library, libxml. The library pro-
vides both an XML parser and an XPath (a subset of XQuery) eval-
uator. We have made no attempts to optimize the performance of
this library. Thus, our measured performance represents a lower
bound, and we expect an efficient implementation could perform
much better. Table 1 shows the time taken to apply a variety of
queries to the same 262-byte sample XML flight packet. We find
that complex expressions can take over twice the time to evaluate in
the context of an XML packet than simple ones. In all cases, packet
processing cost is dominated by XML parsing time.

73

XQuery Time (µs)
Parse 64.2

true() 4.5
/flight/flightleg/altitude > 300 7.1
starts-with(string(/flight/id),’TWA’) 8.9
substring-before(string(/flight/flightleg \

/coordinate/lat),’N’) > 2327 14.5

Table 1: Time to evaluate various queries in an 800Mhz PIII. Pars-
ing a standard 262-byte XML flight update requires 64.2µs. The
four XQuery expressions shown here select the entire feed, flights
above 30,000 feet, Trans World Airlines flights, and flights cur-
rently north of the Tropic of Cancer, respectively.

5.3 Experience with air traffic control data

Our original motivation for developing XML routers was to build
an infrastructure for distributing and processing real-time air traf-
fic control data. Our laboratory receives the Aircraft Situational
Display to Industry (ASDI) [40] feed via a private IP intranet con-
nection to the U.S. Department of Transportation (DOT). The ASDI
feed provides detailed information about the state of North Amer-
ican airspace. ASDI messages include information on flight plans,
departures, flight location, and landings. A position update is re-
ceived approximately once a minute for all enroute aircraft. The
ASDI feed is directly distributed to most major airlines and is used
for collaborative planning between the FAA and the airlines.

The ASDI feed as distributed by the DOT is encoded in ASCII with
a specific compact character encoding for each ASDI message type.
Efforts were made to make native ASDI messages a compressed
format by virtue of their terseness. The ASDI feed is the union of
feeds from multiple Air Route Traffic Control Centers (ARTCCs)
and countries (USA & Canada). Unfortunately, messages that can-
not be parsed using the ASDI specification arise. Thus, at the outset
of our work, we built an ASDI feed parser and carefully gathered
examples of non-standard messages. We slowly tuned our ASDI
feed parser to handle undocumented cases and, today, still find the
occasional new message format.

Early in our work, we decided to convert each ASDI message into a
corresponding XML packet to create an XML packet stream. This
decision guaranteed that all of our applications would have an easy
to parse and well-defined XML DTD to consume. Furthermore,
it centralized our interpretation of the ASDI feed so that it could
be updated as new undocumented message types were identified.
We call the XML stream that is created from the ASDI feed the
XML ATC stream. Figure 12 shows a sample flight in both ASDI
encoding and our XML encoding.

The XML-encoded ASDI packets contain widely varying amounts
of data depending on the type of event being reported: flight de-
partures, arrivals, position updates, or other auditing information.
Packet size ranges from around 250 bytes to almost 1000 bytes, for
an average of about 350 bytes per packet. The stream is diurnal,
peaking in the early evening with an average packet inter-arrival
time of about 14ms, resulting in an XML data stream of about 25
Kbytes per second.

ASDI Format:

153014022245CCZVTZ UAL1021 512 290 4928N/12003W

XML Format:

<?xml version="1.0"?>
<messageid>153014022245CCZVTZ</messageid>
<flight>

<id>UAL1021</id>
<flightleg status="active">
<speed type="ground">512</speed>
<altitude type="reported" mode="plain">

290
</altitude>
<coordinate>

<lat>4928N</lat>
<lon>12003W</lon>

</coordinate>
</flightleg>

</flight>

Figure 12: The same flight data formatted in ASDI and XML. In
practice, we omit the Message ID field from the XML encoding.

0

5000

10000

15000

20000

25000

30000

06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

B
yt

es
 p

er
 s

ec
on

d

Time of day

XML
ASDI

Figure 13: Average bandwidth utilization of the full XML stream
and the native ASDI format vs. time of day. In both cases the
Message ID field (see Figure 12) is removed from all packets at the
root nodes.

Our primary concern in converting the ASDI feed to XML was
potential bandwidth bloat. Figure 13 shows the bandwidth of the
ASDI feed in both native and XML formats averaged over five
minute intervals. Simply converting the feed to XML results in
approximately a four-fold increase in bandwidth when compared
to the native ASDI feed. We ran both the XML and native ASDI
streams through a Lempel-Ziv [21] data compressor. Figure 14
shows the bandwidth of compressed forms of the same streams
shown in Figure 13. While the ASDI feed compresses over a factor
of two, the XML feed compresses over a factor of 10. The net re-
sult is a compressed XML ATC stream is only slightly larger than a
compressed ASDI feed and more efficient than the raw ASDI feed.

74

0

500

1000

1500

2000

2500

06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

B
yt

es
 p

er
 s

ec
on

d

Time of day

XML
ASDI

Figure 14: Average bandwidth utilization of the compressed XML
stream and the compressed ASDI format vs. time of day. Again, in
both cases the Message ID field is removed from all packets at the
root nodes.

We have run mesh networks with two root routers and four internal
routers but a single root router is more typical. This is because
our DOT link is a single point of failure and terminates at our root
router(s). We are adding a second communication line to the DOT
to connect to their backup ASDI system. This will enable us to
have two root routers with independent failure modes. Application
serial numbers (ANs) in our ATC application are provided by the
FAA. Hence, synchronizing multiple roots is straightforward. Each
ASDI message includes a Message ID that we use as the AN of the
corresponding XML packet.

Figure 15 shows one interface to the XML ATC stream. This graph-
ical client implements DCP and connects to our XML router mesh.
The panel on the left of the screen can be used to control the display
of aircraft information. Different colors are used to depict aircraft
altitude and the client will coast the position of an aircraft between
position updates. For our particular application domain of air traffic
control data, XML proved to be a robust and efficient mechanism
for distribution. We anticipate adding new types of clients, includ-
ing an XML stream recorder, to our current system.

6 Discussion

This section considers the strengths and weaknesses of our ap-
proach to content routing using XML. While we believe that many
of the techniques we developed for our ATC application are widely
applicable, we would like to make our assumptions clear.

6.1 AN generation

One difficulty in providing redundant packet sources is providing a
standardized sequence space for packet streams that obey the three
invariants we outlined in Section 4.2.1. Often, application-specific
solutions will present themselves, such as source-derived sequence
numbers or time codes. However, in the absence of application-
provided sequence numbers, it is necessary to use other approaches,
such as cumulative byte counts, block fingerprint matching [23, 38,
39], or other derived metrics.

Figure 15: Java-based client for XML ATC stream showing con-
trols and air traffic.

When a combining router merges XML streams, packets in the
combined stream must have appropriate ANs. Simply using the
ANs from the original uncombined packets for packets in the com-
bined stream will typically not work as packets from different
streams will in general have incomparable ANs. One solution is
for the combining router to become the root of a new stream and
establish its own totally ordered AN space. However, this would
create a single point of failure if sequence assignments in this space
are not coordinated with another combining router. Another ap-
proach is to make AN space partially ordered. For example, the
AN space for a combined stream could be a pair of the AN of the
source packet in its original stream along with an integer suffix that
identifies the source XML stream. Packets with ANs from different
source streams would not be sequenced across streams, but a client
could recover the ordering of XML packets within each stream.

6.2 Flow control

Nodes are responsible for monitoring the loss rate of streams from
their parent and adjusting their predicates appropriately. Limited
per-child buffering is available at each node, and clients may be
disconnected if they are consequently unable to consume the data
stream at an acceptable rate.

The squelching mechanism of DCP allows parents to avoid wast-
ing bandwidth sending packets to a child that the child has already
received. If a child is unable to keep up with the long-term aver-
age rate of the stream, however, queues will build up and action
must be taken. If the client is able to subsist with a smaller sub-
set of the data stream, it may wish to conduct join experiments in
order to determine the appropriate XML query for its bandwidth
constraints [26, 42]. Otherwise, clients persistently unable to keep
up with the data stream will be disconnected by their parents.

75

6.3 Redundancy

We expect that most mesh networks will use n = 2. This level of
redundancy allows for single points of failure and allows mesh re-
pair to proceed without stream flow interruption. We expect that as
future networks increase in capacity a moderate amount of packet
redundancy will be acceptable for high-value streams to achieve
specific reliability and performance goals. Secondary storage is of-
ten replicated for similar reasons.

We have assumed in our analysis that errors from different par-
ents are independent. This assumption can be violated in numerous
ways, but the most likely reason will be shared communication path
components from a child to its parents. In addition, network-wide
effects, such as distributed-denial-of-service attacks, could cause
independent parents to have dependent packet losses. To maximize
link independence, we plan to explore using routers in distinct In-
ternet autonomous systems (ASs) and ensuring that last-mile band-
width is adequate to each AS. In certain applications, it may also be
possible to use private intranets to better control error assumptions.

6.4 Router XML stream reassembly

Each of our routers recreates the original XML stream before it is
processed by the XML switch. We do this to guarantee that every
XML packet is forwarded by every router, to allow a client to ask
for retransmissions from any of its parents, and to potentially allow
the XML switch to keep stream-dependent state between packets
that could be used by queries. The amount of buffering required
is bounded by requiring positive acknowledgments as discussed in
section 4.2.2.

If XML packets are forwarded out-of-order by an XML switch then
a router does not necessarily need to buffer packets or recreate
the original sequenced XML stream. This is, indeed, the case in
our ATC application, although in our ATC application every XML
router does recreate the original XML stream. If an XML router
need not recreate the original XML stream, a router could process
each received packet independently and would not need to process
every packet in an XML stream. In this scenario, a client places in-
creasing reliance upon the redundancy of the mesh to ensure timely
delivery of packets that are not received from a particular router.
In particular, since all levels may forward out of sequence, the la-
tency induced by a retransmission request from the client may be
large. Hence, we have not yet considered how to handle reliable,
out-of-order delivery with bounded latency.

6.5 Packet acknowledgments

For asynchronous, variable-bandwidth data streams, packet loss
can be detected either by the lack of packet acknowledgments at a
sender or by a gap in packet sequence at a receiver. DCP currently
relies upon the latter technique. If inter-arrival times are large, per-
packet ACKs may be required to provide the appropriate level of
responsiveness. Unfortunately, positive acknowledgment schemes
admit a well-known implosion problem where the sender is flooded
with acknowledgments from each of its children.

While our implementation currently uses unicast UDP to transport
DCP packets, DCP could employ IP Multicast where available. The
negative acknowledgment system we describe is capable of han-
dling IP Multicast packet losses. If IP Multicast were employed, a

DCP output component would send a single packet to an appropri-
ate multicast group of its children based upon the children’s queries.

6.6 Dynamic timer adjustment

A robust DCP implementation should be able to automatically ad-
just its timers to the characteristics of the link between nodes. In
particular, the negative acknowledgment timer should be set only
long enough to admit observed packet reordering, which clearly
depends on the inter-packet arrival of the flow. Being too slow re-
sults in poor latency, being too jumpy results in wasted bandwidth.
Similarly, several timers relating to mesh liveliness would benefit
from automatic refinement. In particular, nodes expect to receive
data from their parents every so often. If no data is available in that
interval, the parent sends a keep-alive message. A similar mecha-
nism is employed by the parent to insure the continued presence of
its children. Clearly the timer should be proportional to the stream
data rate, in order to avoid excessive probing. We are currently
exploring applying known techniques to these problems [18].

7 Conclusions and future work

This paper presented three key ideas. First, we introduced the idea
of XML routers that switch self-describing XML packets based
upon any field. Second, we showed how XML routers can be or-
ganized into a resilient overlay network that can tolerate both node
and link failures without reconfiguration and without interrupting
real-time data transport. Finally, we introduced the Diversity Com-
munication Protocol as a way for peers to use redundant packet
transmissions to reduce latency and improve reliability.

A wide variety of extensions can be made to the work presently
reported, both in protocol refinements and additional functionality.
We are actively investigating methods of DCP self-tuning, both for
adaptive timers and sophisticated flow control. DCP can also can
be used for uninterpreted byte streams. Thus, DCP-like ideas may
find application in contexts outside of XML routers. For example,
contemporary work on reliable overlay networks (RONs) could use
DCP as a RON communication protocol to maximize performance
and reliability [2].

Just as secondary storage has become viewed as expendable in pur-
suit of enhanced functionality and performance [34], we believe
that, for certain tightly-constrained applications, network band-
width across multiple paths may be similarly viewed as well-spent
in return for substantial gains in reliability and latency. It is un-
likely that multiple disjoint paths with excess capacity will always
exist on the last mile to a client. Hence, many installations may
benefit from meshes that change to lower levels of redundancy at
critical network points such as points-of-presence before last mile
cable.

Within the scope of XML routing, our current XML routers could
be extended to support.

• More sophisticated XML mesh building and maintenance al-
gorithms.

• Combiners that integrate multiple XML streams for multicast
transport as a single stream.

• Using XML routers for duplex communication.

76

• Other XML network components, such as stream storage and
replay.

• Transcoding XML routers that produce output packets that are
derivatives of input packets, based upon client queries.

Even in its current form, however, we believe our architecture
demonstrates XML is a viable mechanism for content distribution,
providing a natural way to encapsulate related data, and a conve-
nient semantic framing mechanism for intelligent network transport
and routing.

Acknowledgments

We would like to thank Qian Z. Wang and Micah Gutman for their
work on an early version of the XML router and the graphical ASDI
client shown in Figure 15. The DCP experiements were conducted
at emulab.net, the Utah Network Emulation Testbed, which is pri-
marily supported by NSF grant ANI-00-82493 and Cisco Systems.
We are indebted to Benjie Chen and the members of the Click
project for assistance with benchmarking our Click-based XML
router. This paper greatly benfited from comments on earlier drafts
by Chuck Blake, Frans Kaashoek, the anonymous reviewers, and
our shepherd, Maurice Herlihy. We also remember Jochen Liedtke,
Bruce Jay Nelson, and Mark Weiser as great life forces and friends.

References
[1] XMLBlaster. http://www.xmlblaster.org/.

[2] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK,
M. F., AND MORRIS, R. T. Resilient overlay networks. In
Proc. ACM SOSP (Oct. 2001).

[3] ARMSTRONG, S., ET AL. Multicast transport protocol.
RFC 1301, Internet Engineering Task Force, 1992.

[4] BANAVAR, G., CHANDRA, T., MUKHERJEE, B., NAGARA-
JARAO, J., STROM, R., AND STURMAN, D. An efficient
multicast protocol for content-based publish-subscribe sys-
tems. In Proc. Int’l Conf. on Dist. Comp. Systems (ICDCS)
(May 1999).

[5] BANERJEA, A. Simulation study of the capacity effects of
dispersity routing for fault tolerant realtime channels. In Proc.
ACM SIGCOMM (Aug. 1996), pp. 194–205.

[6] BESTAVROS, A. An adaptive information dispersal algorithm
for time-critical reliable communication. In Network Manage-
ment and Control, Volume II, I. Frish, M. Malek, and S. Pan-
war, Eds. Plenum Publishing Co., New York, New York,
1994, pp. 423–438.

[7] BRAY, T., ET AL. Extensible markup language 1.0 (second
edition). http://www.w3.org/TR/REC-xml/, W3C
Recommendation, 2000.

[8] BYERS, J. W., LUBY, M., AND MITZENMACHER, M. Ac-
cessing multiple mirror sites in parallel: Using tornado codes
to speed up downloads. In Proc. IEEE Infocom (Mar. 1999),
pp. 275–283.

[9] BYERS, J. W., LUBY, M., MITZENMACHER, M., AND

REGE, A. A digital fountain approach to reliable distribu-
tion of bulk data. In Proc. ACM SIGCOMM (Sept. 1998),
pp. 56–67.

[10] CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L.
Achieving scalability and expressiveness in an Internet-scale
event notification service. In Proc. ACM PODC (July 2000),
pp. 219–227.

[11] CHAMBERLIN, D., ET AL. XQuery 1.0: An XML query
language. http://www.w3.org/TR/xquery/, W3C
Working Draft, 2001.

[12] CHAWATHE, Y., MCCANNE, S., AND BREWER, E. RMX:
Reliable multicast for heterogeneous networks. In Proc. IEEE
Infocom (Mar. 2000), pp. 795–804.

[13] CHU, Y., RAO, S. G., AND ZHANG, H. The case for end
system multicast. In Proc. ACM SIGMETRICS (June 2000),
pp. 1–12.

[14] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing. IEEE/ACM
Trans. on Networking 5, 6 (Dec. 1997), 784–803.

[15] HOLBROOK, H. W., AND CHERITON, D. R. IP multicast
channels: EXPRESS support for large-scale single-source ap-
plications. In Proc. ACM SIGCOMM (Aug. 1999), pp. 65–78.

[16] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K.,
KAASHOEK, M. F., AND O’TOOLE, J. Overcast: Re-
liable multicasting with an overlay network. In Proc.
USENIX OSDI (Oct. 2000), pp. 197–212.

[17] KADANSKY, M., CHIU, D., AND WESLEY, J. Tree-based
reliable multicast [TRAM]. Technical report TR-98-66, Sun
Microsystems Lab, 1998.

[18] KARN, P., AND PARTRIDGE, C. Improving round-trip time
estimates in reliable transport protocols. ACM CCR 17, 5
(Aug. 1987), 2–7.

[19] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The click modular router. ACM Trans. on
Computer Systems 18, 3 (Aug. 2000), 263–297.

[20] LABOVITZ, C., AHUJA, A., ABOSE, A., AND JAHANIAN, F.
Routing stability and convergence. In Proc. ACM SIGCOMM
(Aug. 2000), pp. 115–126.

[21] LEMPEL, A., AND ZIV, J. A universal algorithm for sequen-
tial data compression. IEEE Trans. on Information Theory 23,
3 (May 1977), 337–343.

[22] LIN, J.-C., AND PAUL, S. RMTP: A reliable multicast trans-
port protocol. In Proc. IEEE Infocom (Mar. 1996), pp. 1414–
1424.

[23] MANBER, U. Finding similar files in a large file system. In
Proc. Winter USENIX (Jan. 1994), pp. 1–10.

[24] MAXEMCHUK, N. F. Dispersity Routing in Store and For-
ward Networks. PhD thesis, University of Pennsylvania, May
1975.

[25] MCAULEY, A. J. Reliable broadband communication using
a burst erasure correcting code. In Proc. ACM SIGCOMM
(Sept. 1990), pp. 297–306.

[26] MCCANNE, S., AND JACOBSON, V. Receiver-driven layered
multicast. In Proc. ACM SIGCOMM (Aug. 1996), pp. 117–
130.

77

[27] MOSER, L., MELLIAR-SMITH, P., AGARWAL, D., BUD-
HIA, R., AND LINGLEY-PAPADOPOULOS, C. Totem: A
fault-tolerant multicast group communication system. C.
ACM 39, 4 (Apr. 1996), 54–63.

[28] OKI, B., PFLUEGL, M., SIEGEL, A., AND SKEEN, D. The
information bus — an architecture for extensible distributed
systems. In Proc. ACM SIGOPS (Dec. 1993), pp. 58–68.

[29] PAXSON, V. End-to-end internet packet dynamics.
IEEE/ACM Trans. on Networking 7, 3 (June 1999), 277–292.

[30] PENDARAKIS, D., SHI, S., VERMA, D., AND WALDVOGEL,
M. ALMI: An application level multicast infrastructure. In
Proc. USENIX Symp. on Internet Technologies and Systems
(USITS) (Mar. 2001), pp. 49–60.

[31] RABIN, M. O. Efficient dispersal of information for security,
load balancing and fault tolerance. J. ACM 36, 2 (Apr. 1989),
335–348.

[32] RIZZO, L. Dummynet: a simple approach to the evaluation
of network protocols. ACM CCR 27, 1 (Jan. 1997).

[33] RIZZO, L., AND VICISANO, L. A reliable multicast data
distribution protocol based on software FEC techniques. In
Proc. IEEE HPCS (June 1997).

[34] SANTRY, D. J., FEELEY, M. J., HUTCHINSON, N. C., AND

VEITCH, A. C. Elephant: The file system that never for-
gets. In Proc. Workshop on Hot Topics in Operating Systems
(HotOS-VII) (Mar. 1999).

[35] SAVAGE, S., ANDERSON, T., AGGARWAL, A., BECKER,
D., CARDWELL, N., COLLINS, A., HOFFMAN, E., SNELL,
J., VAHDAT, A., VOELKER, J., AND ZAHORJAN, J. Detour:
a case for informed internet routing and transport. IEEE Mi-
cro 19, 1 (Jan. 1999), 50–59.

[36] SEGALL, B., ARNOLD, D., BOOT, J., HENDERSON, M.,
AND PHELPS, T. Content based routing with Elvin4. In Proc.
AUUG2K (June 2000).

[37] STOICA, I., NG, T. S. E., AND ZHANG, H. Reunite: A re-
cursive unicast approach to multicast. In Proc. IEEE Infocom
(Mar. 2000), pp. 1644–1653.

[38] TRIDGELL, A. Efficient Algorithms for Sorting and Synchro-
nization. PhD thesis, Australian National University, Apr.
2000.

[39] TRIDGELL, A., AND MACKERRAS, P. The rsync algo-
rithm. Tech. Rep. TR-CS-96-05, Australian National Univer-
sity, 1997.

[40] VOLPE NATIONAL TRANSPORTATION CENTER, AUTOMA-
TION APPLICATIONS DIVISION. Aircraft situation display to
industry functional description and interfaces. DTS-56 report,
Aug. 2000.

[41] WHETTEN, B., AND TASKALE, G. An overview of reli-
able multicast transport protocol II. IEEE Network 14, 1 (Jan.
2000), 37–47.

[42] WU, L., SHARMA, R., AND SMITH, B. Thin streams: An
architecture for multicasting layered video. In ProcİEEE Int’l
Workshop on Network and Operating System Support for Dig-
ital Audio and Video (May 1997).

[43] YAVATKAR, R., GRIFFIOEN, J., AND SUDAN, M. A reli-
able dissemination protocol for interactive collaborative ap-
plications. In Proc. ACM Conf. on Multimedia (Nov. 1995),
pp. 371–372.

78

Efficient View-Dependent Sampling of Visual Hulls

Wojciech Matusik Chris Buehler Leonard McMillan
Computer Graphics Group

MIT Laboratory for Computer Science
Cambridge, MA 02141

Abstract

In this paper we present an efficient algorithm for sampling
visual hulls. Our algorithm computes exact points and nor-
mals on the surface of visual hull instead of a more tradi-
tional volumetric representation. The main feature that dis-
tinguishes our algorithm from previous ones is that it allows
for sampling along arbitrary viewing rays with no loss of
efficiency. Using this property, we adaptively sample visual
hulls to minimize the number of samples needed to attain a
given fidelity. In our experiments, the number of samples
can typically be reduced by an order of magnitude, result-
ing in a corresponding performance increase over previous
algorithms.

1. Introduction
Recently, shape-from-silhouettes techniques have been
used in real-time, shape-acquisition applications [5, 3].
Typically, shape-from-silhouettes techniques involve com-
puting a volume known as the visual hull, which is the max-
imal volume that reproduces the observed silhouettes. It has
been found that visual hulls can be computed very quickly,
and that the calculation is robust to the crude silhouettes
produced by real-time segmentation algorithms.

People commonly compute visual hulls in real-time us-
ing one of two approaches: voxel carving [6, 9] and view
ray sampling [3]. In voxel carving, a discrete grid of vox-
els is constructed around the volume of interest. Then,
each voxel in the grid is checked against the input sihou-
ettes, and any voxels that project outside the silhouettes
are removed from the volume. This procedure results in a
view-independent volumetric representation that may con-
tain quantization and aliasing artifacts due to the discrete
voxelization. Voxel carving can be accelerated using octree
representations.

In view ray sampling, a sampled representation of the
visual hull is constructed. The visual hull is sampled in
a view-dependent manner: for each viewing ray in some
desired view, the intersection points with all surfaces of the
visual hull are computed. This procedure removes much of
the quantization and aliasing artifacts of voxel carving, but

it does not produce a view-independent model. View ray
sampling can be accelerated by sampling the visual hull in
a regular pattern, such as in a regular grid of pixels.

In this paper, we present a new algorithm for computing
view ray sampling. Our algorithm is distinguished by the
fact that it allows for computing arbitrary patterns of sam-
ples with the same efficiency as previous algorithms. We
use our algorithm to accelerate visual hull construction by
adaptively sampling the visual hull. We adjust the density
of samples such that more samples are used in regions of
large depth variation and fewer samples are used in smooth
regions. Using this sampling procedure, we can reduce the
number of samples used to construct the visual hull by more
than 90% with almost no loss of fidelity. We also demon-
strate how to compute surface normals at each sample point.
Further, these normals can be used to direct the adaptive
sampling procedure.

1.1. Previous Work
Laurentini [2] originated the idea of the visual hull: the
maximal volume that reproduces all silhouettes of an ob-
ject. In this paper, visual hulls are constructed from a finite
number of silhouettes, so they are only guaranteed to re-
produce those particular silhouettes. A visual hull is essen-
tially a volume formed from the intersection of silhouette
cones. A silhouette cone is the volume that results from
extruding a silhouette out from its center of projection. It
may be a complicated, non-convex object, depending on the
complexity of the silhouette contours. We represent silhou-
ette contours with line segments, so the resulting silhouette
cones are facted.

Visual hulls are most often computed using voxel
carving[6, 9]. If the primary use for the visual hull is to
produce new renderings, then a view ray sampling approach
such as the image-based visual hull technique introduced
by [3] may be used. The advantage of view ray sampling
algorithms is that they do not suffer from the quantization
artifacts introduced by discrete volumetric representations.

A series of optimizations are discussed in [3] that reduce
the computational overhead of view ray sampling on aver-
age to a constant cost per sample. At the heart of these op-

79

goodelle
Appendix H:

Figure 1: Our algorithms compute a representation of the
visual hull that is sampled along viewing rays (left). This is
in contrast to a voxel–based representation (right).

timizations is a presorting of the silhouette edges about the
epipole of the desired image. This sorting allows samples
to be computed in constant time if the samples are arranged
in scanline order. This initial sorting also involves some
additional cost.

1.2. Contributions

In this paper, we present an improved algorithm that allows
the samples to be computed efficiently in any order. This
flexibility makes it easy to do hierarchical or adaptive sam-
pling of the visual hull. In addition this algorithm visits the
silhouettes in a “lazy” fashion, using only the portions of
the silhouettes necessary. We also describe how to compute
normals for the visual hull samples, which can be useful for
shading and surface reconstruction.

2. Visual Hull Sampling

One way to compute an exact sampling of a visual hull con-
sists of two steps: (1) compute a set of polygons that defines
the surface of a visual hull and (2) sample these polygons
along the sampling rays to produce exact visual hull sam-
ples. The first step consists of a 3D intersection of all the
extruded silhouette cones. The second step is also an inter-
section operation–an intersection of sampling rays with the
volume. The ray intersections result in a set of occupied
volume intervals along each sampling ray.

The algorithm in section 2 is conceptually simple. How-
ever, it is impractical to compute full 3D intersections be-
tween silhouette cones, especially when we are ultimately
interested in samples. We would like to compute the
same result without performing full volume–volume inter-
sections. To do this, we take advantage of the commutative
properties of the intersection operation. An intersection of
a ray with a visual hull is described mathematically as fol-

Figure 2: Instead of computing the intersection of the sam-
pling ray with extruded silhouette cones, we can project the
sampling ray onto the silhouette images, compute the inter-
sections of the projected sampling rays with the silhouette,
and lift back the resulting intervals to 3D.

lows:

V H(S) =

 \
s�S

cone(s)

!
\ ray3D (1)

This operation is equivalent to:

V H(S) =
\
s�S

(cone(s) \ ray3D) (2)

This means that we can first intersect each extruded silhou-
ette with the 3D ray separately. This results in a set of oc-
cupied intervals along the ray. Then we compute the in-
tersection of all these sets of intervals for all silhouettes. In
this process we exchanged volume-volume and volume-line
intersections for simpler volume-line and line-line intersec-
tions.

2.1. Image Space Intersections
We can further simplify the intersection process by exploit-
ing the fact that the cross–section of the extruded silhouette
remains fixed. This observation implies that instead of com-
puting the ray intersection with the extruded silhouette, we
can compute the intersection of the silhouette with the ray
projected onto the plane that defines the cross-section. We
can then backproject the results of the image space inter-
section onto the original 3D ray (see Figure 2). Effectively
we reduce the volume-line intersections to area-line inter-
sections. As we will see in the next section, this reduction
allows us to use simple 2D spatial partitioning for acceler-
ating ray intersections.

We can pick any plane that completely intersects the sil-
houette cone when we perform the area-line intersection.

80

However, it is simplest to perform the operation on the sil-
houette camera’s image plane because (1) the cross-section
is already defined for this plane (it is the silhouette) and (2)
we avoid any possible resampling artifacts.

3. Silhouette-Line Intersections

In this section, we describe an efficient technique for com-
puting the intersection of a set of 2D lines with silhouette
contours. We impose one constraint on the sampling rays:
we require that they all emanate from a single point in space,
the sampling camera. This limitation on our algorithm is
not too severe, as it is often desired to sample the visual
hull from the point-of-view of an arbitrary camera or one of
the silhouette cameras. Note that we do not constrain the
sampling rays to be on a regular grid or in any other struc-
tured organization. Also, the algorithm can work with a set
of parallel sampling rays. This case corresponds to an or-
thographic sampling camera with a center of projection at
infinity.

Our algorithm is based on a data structure called a
“Wedge-Cache.” The Wedge-Cache is used to store inter-
section information that can be re-used when computing
later intersections. The main idea behind the Wedge-Cache
algorithm is based on the epipolar geometry of two views.
An epipolar plane (i.e., a plane that passes through centers
of projections of both cameras) intersects the image planes
of both cameras in epipolar lines [1]. It is easy to see that
all rays from the first camera that lie in the epipolar plane
project to the exact same epipolar line in the second cam-
era (of course, the reverse is true too). Therefore, many
sampling rays will project to the same line in any given sil-
houette view. The Wedge-Cache algorithm takes advantage
of this fact to compute the fast line-silhouette intersections.
The basic idea is to compute and store the intersection re-
sults for each epipolar line the first time it is encountered.
Then, when the same epipolar line is encountered again, we
can simply look up previously computed results.

In practice (because of discretization), we rarely en-
counter the exact same epipolar line twice. Since we want
to reuse silhouette intersections with epipolar lines, we
compute and store the intersections of the silhouette with
wedges (i.e., sets of epipolar lines) rather than single lines.
Within each wedge, we store a list of silhouette edges that
individual lines within the wedge might intersect. Then,
when an epipolar line falls within a previously computed
wedge, we need only intersect that line with the silhouette
edges belonging to the wedge.

We discretize the silhouette image space into a set of
wedges such that each wedge has exactly one pixel width
at the image boundaries (see Figure 3). Depending on the
position of the epipole (shown as a dot) with respect to the
silhouette image, we distinguish nine possible cases of im-

Figure 3: The silhouette image is partitioned into a set of
wedges, which are the entries of the Wedge-Cache. In this
simple example, the silhouette image is 4 � 4 pixels and
there are eight Wedge-Cache entries.

age boundary parts that need to be used. These cases are
illustrated in Figure 4. There is only one special case that
needs to be handled: the case in which the epipolar lines
in a silhouette camera are parallel and do not converge at
the epipole (i.e., the epipole is at infinity). In this case, we
can modify the Wedge-Cache to use parallelogram-shaped
“wedges” (see Figure 5). In some applications, this case can
be avoided by a small perturbation in the orientation of the
sampling camera.

Execution of the Wedge-Cache algorithm proceeds as
follows. For each sampling ray we compute its epipolar
line. Then we determine into which wedge it falls. If sil-
houette edges that lie in this wedge have not been computed,
we use a Bresenham-like algorithm to traverse all the pixels
in the wedge and compute these edges. Then, we test which
of the computed edges in the wedge actually intersect the
given epipolar line. Later, when other epipolar lines fall into
this wedge we simply look up the edges contained in the
wedge and test for intersection with the epipolar line. Fig-
ure 6 illustrates a simple Wedge-Cache with two wedges.
The silhouette in this case is a square consisting of four
edges a; b; c; and d. Each wedge contains three edges as
shown in the figure. In this example, the epipolar line cor-
responding to some sampling ray is contained in wedge 1.
Checking against the three edges in wedge 1 reveals that the
line intersects two edges, a and d.

One nice property of the Wedge-Cache algorithm is that
it employs a lazy-computation strategy; we process pixels
and edges in the wedge only when we have an epipolar line
that lies in this wedge. The pseudocode for VHsample that
uses the Wedge-Cache Algorithm is shown in Figure 7.

81

VHsample (samplingRays R, silhouettes S)
for each silhouetteImage s in S

compute_silhouette_edges(s)
for each samplingRay s in R do
r.intervals = 0..inf

for each silhouetteImage s in S
clear(Cache)
for each samplingRay r in R

lineSegment2D l2 = project_3D_ray(r,s.camInfo)
integer index = compute_wedge_cache_index(l2)
if Cache[index] == EMPTY

silhouetteEdges E = trace_epipolar_wedge(index, s)
Cache[index] = E

intervals int2D = linesegment_isect_silhouette(l2,Cache[index])
intervals int3D = lift_up_to_3D(int2D,r.camInfo,ry3)
r.intervals = intervals_isect_intervals(r.intervals,int3D)

Figure 7: Pseudocode for Wedge-Cache algorithm.

a . b . c .

d . e . f .

g . h . g .

Figure 4: Depending on the position of the epipole with
respect to the silhouette image boundary, we decide which
parts of the silhouette image boundary (thick black lines)
need to be used for wedge indexing.

3.1. Using Valid Epipolar Line Segments

Some care must be taken when implementing the
calc2Dintervals subroutine. This is because some
portions of the epipolar line are not valid and should not be
considered. There are two constraints on the extent of the
epipolar line: (1) it must be in front of the sampling camera
and (2) it must be seen by the silhouette camera. The two
constraints result in four cases that are easily distinguished;
see [4] for details.

Figure 5: In the special case when the epipolar lines are all
parallel, the wedges become parallelograms.

3.2. Visual Hull Surface Normals

In this section we show how to compute visual hull surface
normals for each of the interval endpoints of the sampled
visual hull representation. The surface normal is useful to
reconstruct the surface of the visual hull, and we use nor-
mals in this manner to control the adaptive sampling proce-
dure described in Section 4. Of course, the normal of the
visual hull is not the same as the normal of the original ob-
ject. However, as the number of silhouettes increases, the
normals of the visual hull approach the normals of the ob-
ject in non-concave regions.

Normals are simple to compute with just a little extra
bookkeeping. For each interval endpoint we store a refer-

82

Figure 6: A simple Wedge-Cache example with a square
silhouette. The epipolar line is contained in wedge 1, so it
need only be compared to edges a; c; and d for intersection.
In fact, the line intersects only edges a and d.

ence to the silhouette edge and the silhouette image that de-
termine the interval endpoint. Each interval is then defined
as ((depthstart; edgei;m); (depthend; edgej;n)), where i

and j are the indices of the reference images and m and
n are the silhouette edge indices in the reference images.
The stored edges and the center of projection of the cor-
responding reference image determine a plane in 3D. The
normal of this plane is the same as the surface normal of the
point on the visual hull (see Figure 8). We can compute the
plane normal using the cross-product of the two vectors on
this plane. This leaves two choices of normals (differing in
sign); the proper normal can be chosen based on the direc-
tion of the sampling ray and the knowledge of whether the
sampling ray is entering or leaving the visual hull.

4 Adaptive Visual Hull Sampling

One advantage of the Wedge Cache algorithm is that it al-
lows for sampling along arbitrary viewing rays in any order.
We have used this property to implement an adaptive sam-
pling procedure that can drastically reduce the number of
samples required to construct an image of the visual hull
from a particular view.

First, we decide upon a minimum size N of features that
we expect to see in the visual hull. This choice determines
the smallest features of the visual hull that our algorithm
can resolve. Typically, we choose a minimum feature size
of N = 4, which means the algorithm can potentially miss
features smaller than 4� 4 pixels.

Next, we perform an initial sampling of the visual hull

Figure 8: A silhouette edge combined with the center of
projection define a plane. Visual hull interval endpoints de-
fined by that edge have the same normal as the plane.

by sampling every N th pixel in both the x and y directions.
This initial sampling results in a coarse grid of samples over
the image. For each square in the grid, we consider the sam-
ples at its four corners. If all four sample rays miss the vi-
sual hull, then we conclude that no rays within the square hit
the visual hull, and we mark that square as empty. If some
of the rays miss the visual hull and some of them do not,
then we conclude that a silhouette boundary passes through
this square. In this case, we sample the rest of the rays
within the square to resolve the silhouette edge accurately.

If all four sample rays hit the visual hull, then we decide
whether to sample further based on a simple estimate of the
surface continuity. Since we know the normals at each of
the four samples, we can construct a plane through one the
sample points on the visual hull. If this plane does not pre-
dict the other three sample points sufficiently well, then we
sample the rest of the rays within the square. Otherwise,
we approximate the depths of the samples within the square
using the planar estimate. We compare the prediction er-
ror against a global threshold to decide if more sampling is
necessary.

5. Results
In this section, we present some results of our adaptive sam-
pling algorithm. In Figure 9a, we show the depth map
of a visual hull sampled at every pixel. This visual hull
is computed from 108 input images, and it is sampled at
1024 � 1024 resolution (1048576 samples). In Figure 9b,
we have the same view of the visual hull, but this time it
is sampled with only about 9% of the samples. The mean
squared error between the two depth maps is 0.1 (the depth
maps are quantized to 8 bits). Figure 9c shows the sampling

83

(a) (b) (c)

Figure 9: Visual hull sampling results. (a) Shows the result of sampling every pixel. (b) Shows the result of adaptively
sampling only about 9% of the pixels. (c) Shows where the adaptive sampling procedure increased the sampling density.

(a) (b)

Figure 10: Wedge cache performance results. (a) Shows the percentage of samples that are computed using adaptive sam-
pling. (b) Shows wedge cache performance speedup as compared to the algorithm in [3].

pattern used for this view of the visual hull.

We have found that adaptive sampling of visual hulls is
fruitful on a wide variety of different objects. In Figure 10a
we have plotted the percentage of samples needed to render
a visual hull given a fixed threshold for evaluating surface
continuity.

We compared the runtime performance of our algorithm
to the algorithm described in [3]. The results are shown in
Figure 10b. When fully sampling every pixel in the image,
our wedge cache algorithm is slightly faster on all objects.
When we enable adaptive sampling, the speedup is more
dramatic. On average, there is a factor of five speedup,
which would directly result in increased framerates.

6. Conclusions

We have presented a new algorithm for efficiently sampling
visual hulls. Our algorithm computes exact samples of the
visual hull surface along with surface normals. The algo-
rithm computes these samples along an arbitrary set of sam-
pling rays that emanate from a common point, possibly at
infinity.

Using this algorithm, we have demonstrated a simple
way to adaptively sample depth maps of visual hulls from
virtual viewpoints. By using this adaptive sampling, the per-
formance of the algorithm is increased on average 5 times
with almost no loss in quality of the resulting depth maps.
In real-time systems, for which visual hull analysis has been
found useful, this performance increase translates directly
into faster framerates.

84

References

[1] Faugeras, O. Three-Dimensional Computer Vision. MIT
Press. 1993.

[2] Laurentini, A. “The Visual Hull Concept for Silhouette Based
Image Understanding.” IEEE PAMI 16,2 (1994), 150-162.

[3] Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMil-
lan, L. “Image-Based Visual Hulls,” SIGGRAPH 2000, July
23-28, 2000, 369-374.

[4] McMillan, L. “An Image-Based Approach to Three-
Dimensional Computer Graphics,” Ph.D. Thesis, University
of North Carolina at Chapel Hill, Dept. of Computer Science,
1997.

[5] Kanade, T., P. W. Rander, P. J. Narayanan. “Virtualized Re-
ality: Constructing Virtual Worlds from Real Scenes,” IEEE
Multimedia, 4, 1 (March 1997), pp. 34-47.

[6] Potmesil, M. ”Generating Octree Models of 3D Objects from
their Silhouettes in a Sequence of Images.” CVGIP 40 (1987),
1-29.

[7] Roth, S. D., “Ray Casting for Modeling Solids.” Computer
Graphics and Image Processsing, 18 (February 1982), 109-
144.

[8] Snow, D., Viola, P., and Zabih, R., “Exact Voxel Occupancy
with Graph Cuts,” Proceedings IEEE Conf. on Computer Vi-
sion and Pattern Recognition. 2000.

[9] Szeliski, R. “Rapid Octree Construction from Image Se-
quences.” CVGIP: Image Understanding 58, 1 (July 1993),
23-32.

85

